Human confidence report with multiple alternatives

Submission ID	3000058
Submission Type	Oral Presentation
Торіс	Cognitive Science
Status	Submitted
Submitter	Hsin-Hung Li
Affiliation	New York University

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Confidence is often conceptualized as (monotonically related to) the posterior probability that one's decision is correct. However, confidence could alternatively be based on the difference between the highest and the next-highest value of the posterior distribution, or on the posterior entropy. Most studies on confidence reports have used decision tasks with two choices (e.g. upward versus downward motion) and could therefore not distinguish between these possibilities. In this study, we investigated the computation of confidence in a decision task with three choices. Observers categorized a target stimulus into one of three classes and report their confidence in the decision. The distributions of the three classes were explicitly provided. We found that the model in which confidence is based on the difference of the two highest posterior probabilities best explained the data. This result contradicts the widely held belief that confidence is derived from the maximum of the posterior.

Paper Upload (PDF) Li and Ma_CNN2017_Confidence multiple alternatives_submit.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Hsin-Hung *	Li *	New York University	hsin.hung.li@nyu.edu
Wei Ji	Ма	New York University	weijima@nyu.edu

Keywords

Keywords	
confidence	
decision making	
computational modelling	

Bayesian