Building Models of the World: Neural Mechanisms of Bayesian Model Averaging

Submission ID	3000107
Submission Type	Poster
Торіс	Neuroscience
Status	Submitted
Submitter	Philipp Schwartenbeck
Affiliation	University of Oxford

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Building adequate representations of the environment is central for adaptive behavior, but little is known about the neural computations of forming such internal models. In a functional magnetic resonance imaging study, we investigated the neural mechanisms of (Bayesian) model comparison, which is a crucial aspect of forming structural representations. Subjects performed a gambling task where successful behavior depended on forming beliefs about the current context, posing a hierarchical inference problem on task structure and choice behavior. We found evidence for Bayesian model averaging in behavior, suggesting that subjects' choices were best explained as the uncertainty-weighted average over all possible models (contexts), as opposed to model selection or parameter learning. Neurally, belief updates about models were encoded in the anterior cingulate cortex and ventral midbrain, and model uncertainty - a key feature of model averaging - was encoded in dorsolateral prefrontal cortex, whereas beliefs about current states and their value were encoded in the ventromedial prefrontal and orbitofrontal cortex. Our results suggest a functional gradient along prefrontal cortex for operations on the model- and state-space, and provide insight into the neurocomputational basis of developing accurate and generalizable mental representations, which are likely to be central for understanding pathological behavior in psychiatry.

Paper Upload (PDF) CCNpaper_Schwartenbeck.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Philipp *	Schwartenbeck *	University of Oxford	pschwartenbeck@gmail.c om
Thomas	FitzGerald	University of East Anglia	thbfitz@gmail.com

Christoph	Mathys	Scuola Internazionale Superiore di Studi Avanzati	chmathys@gmail.com
Ray	Dolan	Max Planck University College London Centre for Computational Psychiatry and Ageing Research	r.dolan@ucl.ac.uk
Martin	Kronbichler	Centre for Cognitive Neuroscience, University of Salzburg	mkronbichler@gmail.com
Karl	Friston	University College London	k.friston@ucl.ac.uk

Keywords

Keywords
structure learning
model comparison
hierarchical Bayesian inference
dopamine
computational psychiatry