Brain-Wide Mapping of Stimulus Induced Variability Quenching Reveals Modularity of Cortical Network

Submission ID	3000187
Submission Type	Poster
Торіс	Neuroscience
Status	Submitted
Submitter	Teppei Matsui
Affiliation	University of Tokyo

SUBMISSION DETAILS

Presentation Type Poster Presentation

Presentation Abstract Summary Recent studies have revealed that neurons not directly activated by a given sensory stimulus can nevertheless "respond" to the stimulus by showing reduction of trial-to-trial variability in neural activity ("variability quenching"). Determining the extent of cortical neural circuit that responds to a sensory stimulus is important for understanding how cortical network as a whole process sensory information. Here we used mesoscopic brain activity mapping to find that variability quenching occurred in widespread, bilaterally symmetric, cortical network-module. Each network-module showed variability quenching to particular sensory modality. The network-modules identified by variability quenching closely resembled cortical networks identified by spontaneous activity correlation (a.k.a. resting-state functional connectivity). Thus, although only a subset of neurons is activated, sensory stimulation recruits an entire cortical network-module that share correlated spontaneous activity.

Paper Upload (PDF) ccn_abstract_Matsui_etal.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Teppei *	Matsui *	University of Tokyo	tematsui@m.u-tokyo.ac.jp
Tomonari	Murakami	University of Tokyo	t-mura@m.u-tokyo.ac.jp
Kenichi	Ohki	University of Tokyo	kohki@m.u-tokyo.ac.jp

Keywords

Keywords		

mouse brain connectivity and dynamics

mesoscopic imaging

neural network modeling