How Neural Plasticity Boosts Performance of Spiking Neural Networks

Submission ID	3000227
Submission Type	Poster
Торіс	Artificial Intelligence
Status	Submitted
Submitter	Nicholas Soures
Affiliation	Rochester Institute of Technology

SUBMISSION DETAILS

Presentation Type Oral Presentation

Presentation Abstract Summary Spike timing-dependent plasticity (STDP) is important to understanding plasticity in the brain and is capable of performing functionally significant tasks such as unsupervised learning of visual features, forming sparse representations of temporal sequences, and computing with neural synchrony. However, STDP exhibits runaway synaptic potentiation. Employing homeostatic synaptic scaling, intrinsic plasticity, along with structural plasticity mechanisms, can stabilize the network performance. Guided by these plasticity mechanisms, we develop adaptive spiking neural network accelerators that perform unsupervised learning. The proposed integrative approach is demonstrated on memrisitve neuromorphic accelerators with on-device learning, useful for sensors and IoT.

Paper Upload (PDF) neural-plasticity-boosts (1).pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Nicholas *	Soures *	Rochester Institute of Technology	nms9121@g.rit.edu
Abdullah	Zyarah	Rochester Institute of Technology	amz6011@rit.edu
Kristofor	Carlson	Sandia National Laboratories	kdcarls@sandia.gov
Brad	Aimone	Sandia National Laboratories	jbaimon@sandia.gov
Dhireesha	Kudithipudi	Rochester Institute of Technology	dxkeec@rit.edu

Keywords

Keywords	
Spiking Neural Networks;	
STDP	
Synaptic Normalization	
Intrinsic Plasticity;	
Neurogenesis	
Memristor	