First Order Tactile Neurons with Complex Receptive Fields: A Neural Instantiation of Compressed Sensing?

Submission ID	3000243
Submission Type	Poster
Торіс	Neuroscience
Status	Submitted
Submitter	Weige (Charlie) Zhao
Affiliation	Yale University School of Medicine

SUBMISSION DETAILS

Presentation Type Poster Presentation

Presentation Abstract Summary First-order tactile neurons in the glabrous skin of the human hand have distal axons that branch in the skin and form many transduction sites, yielding spatially complex receptive fields (RFs) with many highly sensitive zones. We have recently shown that this arrangement permits first-order tactile neurons to signal high-level features of touched objects such as the orientation of an edge, a capacity previously considered a hallmark of processing in the somatosensory cortex. Here we leverage machine learning tools to examine why complex receptive fields are optimal under a wide range of training sets and biologically realistic network constraints, and that complex RFs benefit network performance, especially on complex discrimination tasks in the presence of noise. We propose that complex RFs reflect the role of first order neurons as input elements in a neural compressed sensing scheme.

Paper Upload (PDF) CCN 2017 AP.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Weige (Charlie) *	Zhao *	Yale University School of Medicine	weige.zhao@yale.edu
Mark	Daley	Western University	mark.daley@uwo.ca
Andrew	Pruszynski	Schulich School of Medicine and Dentistry	andrew.pruszynski@uwo.c a

Keywords

Keywor	ds
--------	----

tactile system
compressed sensing
receptive field
sensory encoding
artificial neural network