Asymmetric Saccadic Suppression: Preserved Luminance Sensitivity along the Saccade Trajectory

Submission ID	3000247
Submission Type	Poster
Торіс	Neuroscience
Status	Submitted
Submitter	Paul Levy
Affiliation	New York University

SUBMISSION DETAILS

Presentation Type Poster Presentation

Presentation Abstract Summary Visual perception is altered during saccadic eye movements. Previous research points towards a global suppression of achromatic perception (Burr et al., 1994) which preserves visual stability across saccades. However, other research points toward an increase in perceptual capabilities, including achromatic perception (Rolfs & Carrasco, 2012) at targets of eye movements around movement onset (Deubel & Schneider, 1996). To better understand the interaction between these two phenomena, we used a detection task to densely sample changes in achromatic luminance sensitivity around the time of saccades. Human observers were asked to detect pre-, peri-, and post-saccadic probes at a range of spatial locations. Thus far, tens of thousand of trials collected from 3 observers permit a high resolution measurement of how sensitivity is affected by saccades. Consistent with previous reports (Knöll et al., 2011), we observed reduced achromatic sensitivity around the time of the saccade. However, foveal and parafoveal sensitivity were relatively preserved along the saccade trajectory, leading to an asymmetrical sensitivity in central vision. Furthermore, perception remained relatively unimpaired within a region enclosing the fovea and the saccade target. These observations suggest a mechanism that locally counteracts a global suppression during saccades in order to maintain vision along the movement trajectory.

Paper Upload (PDF) SaccSupp_052617_final.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Paul *	Levy *	New York University	paul.levy@nyu.edu
Marc	Zirnsak	Stanford University	mzirnsak@stanford.edu

Lars	Michels	University Hospital Zurich	lars.michels@usz.ch
Tirin	Moore	Stanford University	tirin@stanford.edu
Roozbeh	Kiani	New York University	roozbeh@nyu.edu

Keywords

Keywords
Eye movements
Luminance detection
Saccadic suppression
Spatial stability