Modeling Uncertainty About Low--level Features of Natural Images

Submission ID	3000271
Submission Type	Poster
Торіс	Neuroscience
Status	Submitted
Submitter	Dylan Festa
Affiliation	Albert Einstein College of Medicine, Department of Neuroscience

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary A central hypothesis about early visual processing is that it is tuned to the statistical regularities of the natural environment. Simple versions of this hypothesis explain properties of receptive fields and nonlinear responses in primary visual cortex (V1). Yet existing models fall short of capturing V1 responses to natural images, particularly the structure and variability of population activity. To address these issues, we combine two recent advances in the field. First, Coen-Cagli et al. (2015) showed that a flexible model of spatial interactions in images, whereby neural activity is selectively modulated by high-order statistical dependencies (image homogeneity), accurately predicts firing rates evoked by natural images. Second, Orbán et al. (2016) accounted for several aspects of spike-count variability distribution over latent variables in a simple model of image statistics. Here we further extend the model of Coen-Cagli et al. (2015), and we use sampling to perform inference and relate it to response variability. The model recapitulates known properties of response variability, and generates new predictions for how population variability is influenced by the statistical homogeneity of the visual inputs, independently from the modulation of firing rate.

Paper Upload (PDF) FestaCoen-Cagli_CCNAbstract.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Dylan *	Festa *	Albert Einstein College of Medicine, Department of Neuroscience	dylan.festa@einstein.yu.e du
Ruben	Coen-Cagli	Albert Einstein College of Medicine	ruben.coen-cagli@einstei n.yu.edu

Keywords

Keywords	
neural coding	
primary visual cortex	
V1	
neural variability	
sampling hypothesis	