Modular Task Learning in an Embodied Two-Dimensional Visual Environment

Submission ID	3000288
Submission Type	Oral Presentation
Торіс	Artificial Intelligence
Status	Submitted
Submitter	Kevin Feigelis
Affiliation	Stanford University

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Animals (especially humans) exhibit a remarkable ability to rapidly learn new tasks, and switch between them flexibly. However, the algorithmic and neuroscientific basis for how brains accomplish this, is largely unknown. A reasonable hypothesis is that brains achieve flexible task learning with light-weight, shallow, task-specific modules that are dynamically allocated on top of a deep, largely stable general-purpose underlying sensory representation. In this work, we investigate module architectures embedded within an embodied visual environment in which an agent receives a stream of images and rewards from a server, and chooses two-dimensional positions as actions on each time-step. This environment is designed to emulate the physical conditions of touchscreen apparatuses commonly used in visual neuroscience and psychophysics experiments. Under this environmental constraint, we show that very simple changes in the nonlinear motifs deployed in such a module can significantly influence both its single-task learning efficiency, and its ability to quickly transfer knowledge to new tasks.

Paper Upload (PDF) ccn_2017_final.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Kevin *	Feigelis *	Stanford University	feigelis@stanford.edu
Daniel	Yamins	Stanford University	yamins@stanford.edu

Keywords

Keywords	
Multitask and Transfer Learning	

Task Switching

Plasticity and Adaptation

Embodied Systems