Camera-Based Detection of the Early Stages of Fatigue: Validation with Meg and Self-Assessment Data

Submission ID 3000303

Submission Type Poster

Topic Cognitive Science

Status Submitted

Submitter Neelesh Kumar

Affiliation Rutgers University

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary The early stages of fatigue are associated with a transient, subconscious decrease in cognitive ability, which can influence decision making. Here, we present a camera-based method that detects the early stages of fatigue. From a 3-hour long experiment conducted on 12 subjects, we acquired synchronous camera (visual) and Magnetoencephalography - MEG (brain) data. We extracted eyelids and head-movement related features and trained Random Forest, K Nearest Neighbor and Support Vector Machine classifiers to distinguish between Non-Fatigue and Fatigue classes, achieving test accuracies of 98%, 97% and 92%, respectively. We then introduced a temporal sliding window method where the binary classification error is used as a metric of the gradual change in fatigue levels, leveraging a progressive increment in detection of Fatigue classes as the window slides towards the later stages of the experiment. For validation, we performed regression between our model's predictions and fatigue-induced alpha band (8-12Hz) power increases in MEG, yielding an average $\rho^2=0.6$. Our results also correlated well with a self-reported behavioral metric. This work describes our ongoing effort to develop a real-time vision-based early fatigue detection system.

Paper Upload (PDF) EarlyFatigue Combra CCN17.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Neelesh *	Kumar *	Rutgers University	neelesh.kumar@rutgers.e du

Chintan	Trivedi	Dept. of Computer Science, Rutgers University	chintan.trivedi@rutgers.e du
Lezi	Wang	Dept. of Computer Science, Rutgers University	lw462@cs.rutgers.edu
Dimitrios	Pantazis	McGovern Institute for Brain Research, Massachusetts Institute of Technology	pantazis@mit.edu
Dimitris N.	Metaxas	Dept. of Computer Science, Rutgers University	dnm@cs.rutgers.edu
Konstantinos	Michmizos	Computer Science / Rutgers University	konstantinos.michmizos@ cs.rutgers.edu

Keywords

Keywords	
Computer vision	
Magnetoencephalography	
machine learning	
Fatigue	