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Abstract
Biological vision is envied for its ability to learn to
recognize objects in the 3D world undergoing phys-
ical transformations. A recent hypothesis is that the
ventral visual pathway exploits the manifold nature
of these transformations to form neural codes that
are efficient for discrimination, but there is no com-
pelling model for how this representation is learned
from data. We propose a computational model that
performs unsupervised learning on received reti-
nal imagery to infer identity-preserving transforma-
tions. We show that such a model can successfully
learn useful representations on a subset of objects
that can be transferred to new objects. We also
demonstrate that this model can be used to infer
3D transformations from 2D imagery despite the ill-
conditioned nature of the problem. This model for
3D inference can account for psychophysical exper-
iments such as 3D shape perception from random-
dot kinematograms.
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Introduction
The central task of the human visual system is to use
the received retinal images to make inferences about
the environmental causes of those stimuli. This is a
challenging problem because the retinal images change
dramatically when objects in the world undergo sim-
ple physical transformations such as rotation and scal-
ing. Recent theories of neural coding in the ventral
visual pathway propose that the system takes advan-
tage of the fact that identity-preserving physical trans-
formations (e.g., rotation) induce a manifold in any given
neural code. Specifically, the hypothesis is that the
stages of the ventral pathway serve to flatten the man-
ifold of the representation at each stage, resulting in
high-level areas (e.g., Inferior Temporal (IT) Cortex) that
have responses that are more robust for object recog-
nition (DiCarlo & Cox, 2007). Understanding the rep-
resentations and algorithms underlying invariant visual
recognition in biology would be of immense value in
computer vision systems.

The role of manifold models in neural coding has pre-
liminary support from electrophysiology data (DiCarlo,
Zoccolan, & Rust, 2012). However, we lack a compu-
tational model of how a neural system could learn to
represent and exploit the manifold nature of transforma-
tions in the 3D world from the received retinal (2D) im-
ages of transforming objects. The contribution of our
work is to propose a computational model that uses
unsupervised learning to create an analytic representa-
tion of these manifold structures. We use this model to
demonstrate the transfer of identity-preserving transfor-
mation and to explain non-trivial perceptual experiments
in the psychophysics literature.

We base our approach on proposed techniques for
learning Lie group operators (called manifold trans-
port operators) that capture motion along a mani-
fold (Culpepper & Olshausen, 2009; Sohl-Dickstein,
Wang, & Olshausen, 2010). The main idea is to learn
a dictionary of operators that describe transformations
along a manifold and then infer, for any given pair
of points, which operators are active. In detail, the
model assumes that two nearby points in a state space
x0,x1 ∈ RN , are related through the following equation:

x1 = exp(A)x0 + n, (1)

where A ∈ RN×N is an operator that represents the
transformation dynamics and n is the noise. The matrix
A can be represented as a weighted sum of M dictio-
nary elements (Ψm ∈ RN×N ):

A =

M∑
m=1

Ψmcm. (2)

The set of dictionary elements {Ψm} are learned from
pairs of data points using gradient descent. As one ex-
ample, we could use keypoint locations (e.g., corners)
from different frames of rotating objects in R3 as our
state vectors and the operators will learn to transport
objects in 3D along paths consistent with rigid body ro-
tation.

Transferring Manifold Transformations
These transport operators represent identity-preserving
transformations that can map out the low-dimensional



Figure 1: An example of manifold transformations
trained on ‘8’ digits being applied to the letter ’M’.

manifolds that objects exist on. In many cases, the
physical processes producing variations in one class of
objects can also impact many other classes. Therefore,
the model for manifold transformations in one class may
be transferred to other classes to induce similar trans-
formations. Unlike most other manifold learning tech-
niques, the transport operator manifold representation,
once trained, is not reliant on the training points. This
allows the manifold model to be transferred between
classes. We utilize the USPS handwritten digit image
dataset (Hull, 1994) to demonstrate our ability to use
transport operator representations to perform transfer
learning.

For training, we create a dataset that consists of
1000 examples of the digit ’8’ paired with that same
image rotated 2.5 degrees and transport operators are
learned between those point pairs. In other words, with-
out telling the algorithms about the concept of rotation,
we seek to have them learn the general transformation
manifold from examples of only slightly rotated ‘8’ dig-
its. To highlight the performance when information is
transferred between manifolds, we apply the transfor-
mation that was learned only on rotated ‘8’ digits to the
letter ’M’ which is a new object class. Fig. 1 shows
the original ‘M’ as well as the result after applying the
learned transport operator transformation. Despite be-
ing trained only on slightly rotated ‘8’ digits, the transport
operator can rotate the ’M’ by nearly 45 degrees while
maintaining the shape of the letter and without inducing
much distortion. This provides an example of how the
transport operator model can transfer manifold transfor-
mations to new classes and extrapolate transformations
beyond the original training samples.

3D Inference
As we showed in the previous section, this manifold
transformation model can be powerful when images are
input in their original pixel format. However, we want
to learn about the physics of transformations in the 3D
world and the data available to the visual system are
the 2D points, y0,y1 ∈ R2, the projections of x0 and x1.
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Figure 2: Trajectories for each of the four transport op-
erators learned from 2D projections of points rotated in
3D. (a-c) show three transport operators that rotate in
different orientations around the sphere and (d) shows
a transport operator that scales inputs.

Because y1 is a transformed view of y0, we need only
the depth of y0 and the transformation between the two
points to estimate y1. Therefore, y0 and y1 are related
through the following equation:

y1 = K exp

(
M∑

m=1

Ψmcm

)[
y0

λ

]
+ n (3)

where K is a projection matrix (assumed to be ortho-
graphic projection) and λ is the depth associated with
y0. Using this observation model and an unsupervised
learning approach that includes the orthographic pro-
jection model in the inverse problem, we have used 2D
stimuli of rotating objects to learn a manifold representa-
tion of 3D physical transformations such as rotation and
scaling in a completely unsupervised model (illustrated
in Fig. 2).

Random-dot kinematograms provide an example of
how humans are able to infer a 3D structure from simple
moving points in a 2D image without additional depth
cues. Random-dot kinematograms are sequences of
images with randomly placed dots that move along a
transparent 3D shape. For instance, the dots in the
left plot in Fig. 3a show one frame of a random dot
kinematogram where the shape is a cylinder (perceived
when the dots are in motion). We can apply the model
described above that has been trained on rotating ob-
jects to jointly estimate the transformations and depths
of the dots in the kinematogram stimulus. The left
plot from Fig 3a shows one frame of the random-dot
kinematogram from which it is impossible to determine
the 3D structure of the points in isolation. The model
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Figure 3: (a) Left: View of one frame of the random-
dot kinematogram of a cylinder. Right: Top-down view
of the depth inferred for each point in the kinematogram
using the rotational transport operators. The points are
colored by the true depth of each point. (b) Left: True
depth for four points over a succession of frames. Right:
Inferred depth for the same four points.

inference of depth from the moving video (shown in
top-down view) is shown in the right plot from Fig 3a.
Fig 3b provides a quantitative comparison of the true
depth and the inferred depth for four points in the kine-
matogram. The estimated depths are very close to the
true depths within a scale factor, despite the model
never being told explicitly about the concept of rota-
tion and never having access to data directly from a 3D
model. Preliminary simulations show that this model ac-
counts for some aspects of other classic psychophys-
ical experiments such as reaction time in mental ro-
tation tasks in the classic work of Shepard and Met-
zler (Shepard & Metzler, 1971).

Conclusion
We presented a model for how identity-preserving trans-
formations are learned from 2D imagery. This model
may be able to explain how the human visual system
is able to learn natural transformations from a limited
number of samples and use that knowledge to effec-
tively recognize new objects in the future. Additionally,
this model provides an example for how 3D transforma-
tions can be represented in the brain and applied to 2D

visual stimuli.
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