Deep neural networks trained with heavier data augmentation
learn features closer to representations in hiT
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Abstract

Modern artificial neural networks have been shown to
learn representations comparable to the human visual
cortex. However, the degree of representational similar-
ity greatly differs between network architectures, training
data sets and other factors. Understanding what makes
a deep neural network learn representations closer to
the human brain and subsequently developing models
that reduce the gap helps computational neuroscientists
investigate the underlying mechanisms that shape neu-
ral representations. Furthermore, understanding infor-
mation processing in the brain paves the way for bet-
ter artificial intelligence algorithms, as human vision is
known to be highly robust. In this work, we investigate
the relationship between augmentation of training data
and the representational similarity of convolutional neu-
ral networks with high-level visual representations in hu-
man inferior temporal cortex. Our results suggest that
networks trained with heavier augmentation yield repre-
sentations that are more similar between deep neural net-
works and the brain.
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Introduction

One of the central goals of computational neuroscience is to
develop better models of the human brain. The re-emergence
of deep artificial neural networks, which now excel at many
artificial intelligence tasks by automatically learning hierar-
chical representations (Girshick, Donahue, Darrell, & Malik,

2014), has also had a positive impact on computational neuro-
science. For instance, the deep features learned by networks
trained for image object classification have been found to cor-
relate better with the representations in the human inferior
temporal cortex (hIT) than traditional hand-crafted features or
shallow models (Khaligh-Razavi & Kriegeskorte, 2014). Fur-
ther, convolutional neural networks (CNN) are currently the
most accurate models for multiple regions across the primate
visual cortex (Kietzmann, McClure, & Kriegeskorte, 2017;
Yamins & DiCarlo, 2016). However, while the similarity be-
tween artificial and human neural networks is promising, the
crucial question remains: what makes CNNs learn represen-
tations that more closely mirror the ones in hIT?

Previous work has revealed that networks performing bet-
ter in classification tasks correlate more strongly with neu-
ral representations in high level areas (Yamins et al., 2014).
Moreover, the network architecture plays a crucial role (Storrs,
Mehrer, Walther, & Kriegeskorte, 2017) and Mehrer, Kietz-
mann, and Kriegeskorte (2017) recently showed that train-
ing with more ecologically relevant input statistics yields more
similar representations. Inspired by the apparent importance
of the training data, we here explore the influence of data aug-
mentation on the representational similarity of CNNs and hIT.

Data augmentation in machine learning refers to syntheti-
cally expanding a training set by applying transformations on
existing examples such that they reflect plausible variations
of the real objects and serve as additional training data. Al-
though data augmentation has been used for a long time, sys-
tematic explorations of its benefits compared to other popu-
lar techniques have only recently gained traction (Hernandez-



Garcia & Koénig, 2018; Perez & Wang, 2017). Further, addi-
tional data augmentation techniques have been recently pro-
posed (Ratner, Ehrenberg, Hussain, Dunnmon, & Ré, 2017).
The impact of data augmentation on the similarity with repre-
sentations in hiT is, to our knowledge, still unknown.

Here, we train two CNN architectures for image object clas-
sification with two different data augmentation schemes: light
transformations are limited to random crops, horizontal flips
of the images and translations of 10 % of the image size;
and heavier transformations perform additionally contrast and
brightness adjustment as well as a larger range of affine trans-
formations. Our analyses reveal that, regardless of the perfor-
mance, the networks trained with heavier data augmentation
learn features more similar to representations in the human
inferior temporal cortex.

Methods

This section presents the experimental setup to analyze the
role of data augmentation on the similarity between artificial
neural networks and neural representations in hiT. We de-
scribe the network architectures, the augmentation schemes
and the methodology employed to compare both systems.

Network architectures

To ensure the generality of the effects observed, we analyze
two distinct, well-known CNNs, which reach high-performance
on image object-classification: the all convolutional network,
All-CNN (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014)
and the wide residual network, WRN (Zagoruyko & Ko-
modakis, 2016):

e AII-CNN consists only of 12 convolutional layers, each fol-
lowed by batch normalization and a ReLU activation. It has
a total of 9.4 million parameters.

e WRN is a modification of ResNet (He, Zhang, Ren, & Sun,
2016) that achieves better performance with fewer layers,
but more units per layer. We choose the WRN-28-10 ver-
sion of the original paper, which has 28 layers and about
36.5 million parameters.

Following our previous work (Hernandez-Garcia & Konig,
2018), we remove weight decay and dropout, since, in the cur-
rently tested architectures, explicit regularization techniques
do not contribute to better performance when enough data
augmentation is applied. The rest of the hyperparameters are
identical to the original papers.

Data augmentation

We define two data augmentation schemes, light and heav-
ier. Both are applied to the highly benchmarked ImageNet
ILSVRC 2012 data set (Russakovsky et al., 2015). The
dataset contains almost 1.3 million high resolution images,
which were resized into 150 x 200 pixels. The data augmen-
tation schemes are the following:

e The light augmentation scheme is adopted from the lit-
erature, for instance (Springenberg et al., 2014). It per-
forms only random horizontal flips and horizontal and verti-
cal translations of maximum 10% of the image size, as well
as random crops of 128 x 128 pixels.

e The heavier scheme performs a larger range of ran-
dom affine transformations such as scaling, rotations and
shear mapping, as well as contrast and brightness adjust-
ment and random crops. Further details can be found in
(Hernandez-Garcia & Konig, 2018).

Figure 1: lllustration of the transformations performed by the
light and heavier augmentation schemes on two example im-
ages. Note that the five transformations of each image have
been produced by setting extreme values of the parameters,
in order to highlight the characteristics of the schemes and the
differences between them.
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Figure 2: Test performance of All-CNN and WRN trained with
light and heavier data augmentation.

The performance of All-CNN and WRN, trained with either
light or heavier augmentation is shown in Figure 2. Note
that training with light augmentation provides better results,
specially on All-CNN. As pointed out in (Hernandez-Garcia &
Kdnig, 2018), this is likely explained by the limited capacity
of All-CNN, that prevents it from exploiting the heavy transfor-
mations of the already large ImageNet data set as improved
classification accuracy. Besides, the heavier scheme was not



designed to optimize classification, but rather as an arbitrary
larger set of plausible transformations. On smaller data sets,
such as CIFAR, All-CNN trained with the same heavier aug-
mentation scheme does outperform the model trained with
light augmentation.

Representational similarity analysis

We make use of representational similarity analysis (RSA)
(Kriegeskorte, Mur, & Bandettini, 2008; Nili et al., 2014) to
characterize how similar the features learned by a CNN are
to the representations in hIT. RSA has the benefit of allowing
for direct comparisons across different model systems with-
out having to explicitly align the different measurement types.
This is accomplished by constructing representational dissim-
ilarity matrices (RDMs). Across a large set of input images,
RDMs characterize the internal representations of a given
system by storing all pairwise distances. The resulting ma-
trix therefore expresses the representational geometry in the
high-dimensional activation space. By relying on distances,
RDMs remain unchanged, if the space over which they are
computed is rotated.

To characterize the representations in hIT, functional mag-
netic resonance imaging (fMRI) was used to measure BOLD
responses while the participants (n=15) were presented with
92 images of isolated objects. The images originate from a
wide variety of categories and levels of abstraction. On the
broadest level, they can be separated into animate and inan-
imate. Inanimates can either be natural or artificial objects,
whereas animates are divided into human stimuli (heads and
body parts) and animals (full body and heads only). See
(Kriegeskorte, Mur, Ruff, et al., 2008) for further details.

To compare DNNs and hIT representations, the network ac-
tivation profiles for the 92 images were extracted. In particu-
lar, we compute the activations at the outputs of the 12 ReLU
layers of All-CNN and at the outputs of the residual blocks of
WRN. We then compute the RDM of both the responses in
hIT, as well as at each layer of the CNNs using correlation dis-
tance. To obtain a more compact representation of the CNN
models, we obtain a single RDM as a linear combination of
the individual layer RDMs with respect to the hIT RDM using
non-negative least squares and a cross-validation procedure,
which avoids overfitting the image set.

Finally, we characterize the similarity between the CNNs
and hIT by computing the Kendall’s rank correlation coefficient
T4 between the RDM of the hIT representations and the RDM
of the convolutional models. Standard errors were obtained
from the similarity estimates to the 15 human subjects.

Results and discussion

The results presented in Figure 3 show that the correlation
with the hIT representations is significantly higher for the mod-
els trained with heavier data augmentation. Notably, this is
true despite its lower performance in terms of classification
accuracy. In the case of the wide residual network (WRN) the
difference between the two levels of augmentation is consider-
ably larger, while in the All-CNN models, although statistically

significant (p < 0.05), the difference is smaller. This may be
explained by the worse classification accuracy of the model
trained with heavier augmentation, as discussed above. The
overall lower correlation of WRN replicates Storrs et al. (2017),
who showed that residual networks exhibit a particularly low
correlation with hIT compared to other architectures.

[ Light aug. [ Heavier aug.

o
N

o
W

RDM correlation (Kendall taua)
o o
= N

_——

* * * *
All-CNN WRN

o
o

Figure 3: Comparison of the Kendall's T4 coefficient of the hIT
RDM and the RDM of the networks trained with light and heav-
ier data augmentation. Both on All-CNN and WRN, the corre-
lation of the model trained with heavier transformations is sig-
nificantly higher than the light counterpart. The gray shaded
area indicates the maximum possible correlation of a model
given the noise in the measured data.

Given the exploratory nature of this project, it is not yet clear
what exact mechanisms lead to the better match between rep-
resentational geometries in higher level visual cortex and net-
works trained with heavier data augmentation. One possibility
is that the larger variety during training may be more biologi-
cally plausible than training with constant images or very light
transformations. Humans develop robust object representa-
tions based on highly variable input, while freely exploring the
world. Sources of variation include different orientations, light-
ing conditions, backgrounds and occlusion. Eye-movements,
including drifts and microsaccades, may further contribute to
the variability in the sensory input to which the brain has to
be invariant. Finally, developmental aspects of vision during
early infancy lead to drastic changes in the input and may fur-
ther facilitate robustness.

Our experiments address the question as to which factors
drive computational models to learn representations closer to
human brain. Given the superiority in visual robustness of the
human brain, these insights may have implications for artificial
vision systems based on deep neural networks, and for DNNs
as a model system for visual processing in the brain. Finding
that heavier training data transformations leads to more IT-
like representations furthermore supports the notion that the
input distribution can play a crucial role during the learning of
representations in the brain (Mehrer et al., 2017).



Conclusion

We here explored how far light and heavier augmentation of
the training set can affect the internal representations of deep
neural networks and their alignment with human IT. To com-
pare the neural and model system, we used representational
similarity analysis, which allows for straight forward compar-
isons across different modalities (here fMRI BOLD and DNN
activations). RSA revealed that the CNNs trained with heav-
ier transformations learn representations more similar to those
observed in higher visual cortex.

Future work should analyze a larger range of network archi-
tectures and data sets to gain better insights into the mecha-
nisms driving the internal representations. It will be also inter-
esting to study the different components of data augmentation
in order to understand which particular transformations play a
bigger role in better explaining hiT.
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