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Abstract
The theory of decision by sampling (DbS) proposes that
an attribute’s subjective value is its rank within a sam-
ple of attribute values retrieved from memory. This can
account for behavioral and neural data demonstrating
context dependence beyond classic theories of decision
making which assume stable preferences. In this paper,
we provide a normative justification for DbS that is based
on the principle of efficient coding. The efficient repre-
sentation of information in a noiseless communication
channel is characterized by a uniform response distribu-
tion, which the rank transformation implements. How-
ever, cognitive limitations imply that decision samples
are finite, introducing noise. Efficient coding in a noisy
channel requires smoothing of the signal, a principle that
leads to a new generalization of DbS. This generalization
helps descriptively account for a wider set of behavioral
and neural observations, such as linearity in neural tun-
ing curves, and variation in sensitivity to attribute range.
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Decision by Sampling
Descriptive accounts of decision making such as ex-
pected utility theory are typically based on a stable set of
“psychoeconomic” functions specifying the mental rep-
resentations of gains, losses, probabilities, and delays.
However, the psychological reality of such functions has
been challenged by evidence that decisions are highly
context-sensitive: the mental representation of an at-
tribute changes depending on the choice set and other
attribute values retrieved from memory. One influential
account—decision by sampling (DbS)—proposes that at-
tributes of the current prospect are ordinally compared
to attributes sampled from memory (Stewart, Chater, &
Brown, 2006). By tallying these ordinal comparisons, a
decision maker computes the value of a prospect’s at-
tribute as its rank relative to the distribution of attribute
magnitudes in memory. Such nonlinear rank-based value
representations have been observed in the brain (Mullett
& Tunney, 2013). While DbS is a psychological process
model, we show that the same set of ideas can be arrived
at from a normative analysis based on the principle of effi-
cient coding, which has a long history in the study of per-
ceptual systems and has more recently been applied to
neural representations of value (Louie & Glimcher, 2012).

The central contribution of our work is to clarify the
computational design principles of DbS and related mod-
els, uniting them with an important strand of theoretical
neuroscience. This paves the way for new behavioral pre-
dictions, insights into how DbS might be implemented in
the brain, and a deeper understanding of the connections
between information theory and decision making.

Efficient Coding and the Rank Transformation

According to the efficient coding principle, the brain is
designed to communicate information in ways that min-
imize the costs of neural representation. This is accom-
plished by choosing a neural code that maximizes the mu-
tual information between a neuron’s inputs and outputs.
When neurons are conceived as noiseless communica-
tion channels, maximizing mutual information is equiva-
lent to minimizing redundancy, which can be achieved by
recoding inputs according to their rank (Laughlin, 1981)—
precisely the operation implemented by DbS in the limit of
an infinite number of samples.

More formally, the mutual information between input
(attribute) x and output (neural response) y is defined as
I(x;y) = H(y)−H(y|x), where H(y) is the entropy of the
output, and H(y|x) is the conditional entropy of the out-
put given the input. Noise in the channel is captured by
H(y|x) which reflects the residual uncertainty in the re-
sponse knowing the stimulus. The principle of efficient
coding as typically applied entails that stimuli should
be encoded to maximize mutual information—that is, the
mapping from x to y should maximize I(x;y).

In the noiseless regime, H(y|x) is 0, so maximizing mu-
tual information is equivalent to maximizing output en-
tropy (i.e., unpredictability). This is achieved by encoding
x using the CDF, y = F(x), also known as the probability
integral transform, which guarantees that y is uniformly
distributed. Since DbS approximates the probability in-
tegral transform, it can be understood as implementing
efficient coding of psychoeconomic functions. In other
words, DbS removes redundancies from the representa-
tions of gains, losses, probabilities, and delays, so that
they can be represented with fewer bits (and thus presum-
ably a lower metabolic cost). When the decision sample
is large, the empirical rank F̂(x) will serve as a good ap-
proximation of the true rank F(x).



Smoothing and Range Sensitivity
However, natural cognitive constraints imply that only
a finite number of samples can be drawn from mem-
ory, in which case the channel becomes noisy. Effi-
ciency can be partially restored by using a smoothed
estimate of rank. Formally, one can heuristically sat-
isfy the conflicting demands of redundancy reduction
and information transmission by first smoothing the in-
puts prior to computing the probability integral transform,
F̂h(x;x1:N) =

1
N ∑

N
i=1 K

( x−xi
h

)
with a sample x1:N , where

K(z) =
∫ z
−∞

k(z′)dz′ is an integrated kernel function and
h is a bandwidth parameter. From a coding perspective,
smoothing spreads out stimulus representations to better
use the entire representational space, and it can reduce
the variance of the rank estimate. This idea suggests that
the principle of smoothing may guide the development
and assessment of psychoeconomic models.

Smoothing increases the linearity of response func-
tions, producing sensitivity to the range of the sample
(rather than its skew), which addresses a known lim-
itation of DbS. Smoothing may thus explain how effi-
cient coding can be consistent with linear neural tun-
ing curves that adapt to the range of values even when
the attribute distribution is highly skewed (Rustichini, Co-
nen, Cai, & Padoa-Schioppa, 2017). The smoothed repre-
sentation formally corresponds to range-frequency the-
ory (Parducci, 1995), according to which evaluation is a
mixture of the attribute’s rank and its position within the
range of the contextual distribution.

Optimal Smoothing and Categorical Judgment
If range-based representations arise from smoothing,
then the balance between rank and range sensitivity may
be predicted by factors that affect the optimal level of
smoothing. One such factor is the granularity of available
responses. Within the confines of certain tasks, people
must respond using a limited number of categories. Our
theory speaks also to this setting.

Parducci and Wedell (1986) find that the number of
available response categories influences the effects of
skewness and the apparent weighting of range and rank
elements. As the number of categories increases, the
range component becomes more dominant and skew-
ness has a diminished effect on judgment. This may be
explained by optimal smoothing. When only a small num-
ber of response categories are available, evaluation does
not need to be as precise. Response granularity naturally
mitigates the effects of noise, including the harm caused
by finite samples. Hence, smoothing (and thus range sen-
sitivity) is less necessary with few categories.

Smoothing as Reduced Discriminability
As suggested by Stewart et al. (2006) and later elaborated
by Brown and Matthews (2011), range-like effects can
be captured by DbS if one assumes that experienced at-

tribute values are not perfectly discriminable in memory.
The efficient coding framework offers another perspec-
tive on this connection: imperfect discrimination may be
a mechanism for reducing coding errors.

Kernel smoothing from a sampling perspective can
present as reduced discriminability between retrieved
items. Suppose that when an item is drawn from mem-
ory, some uncertainty is felt about its true location. This
entails that items won’t be completely distinguishable,
and those nearer each other will be harder to distinguish.
These are the assumptions imposed by reduced discrim-
inability models. The coarse binary comparisons of DbS
are then replaced with graded assessments of order to
allow some tolerance. Rather than simply determining
whether the target is greater than each sample value,
the differences between the target and the samples are
judged as significant to varying degrees based on the
level of uncertainty. This smoothed comparison is ex-
actly what a kernel encodes. Thus smoothing has a nat-
ural cognitive implementation based on uncertainty in re-
trieved values.
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