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Abstract

Information from multiple sources is exploited by the
neural system to facilitate reliable and flexible informa-
tion processing, in a near-optimal way as predicted by
Bayes’ rule. However, the underlying network architec-
ture achieving the optimal integration is largely unknown,
especially when the prior distribution describing the mul-
tiple sensory stimuli is only partially correlated. Here, we
study a decentralized architecture, in which each module
is a recurrent neural network processing input from one
source, and cross-talks among them can facilitate inte-
gration. To achieve inter-modular communication, each
module receives direct input from other sources through
the cross-links, and indirect input from the other mod-
ules through reciprocal links. Through theoretical anal-
ysis and network optimization, we investigate how mul-
tisensory likelihoods and priors are encoded in different
components of the network structure. We found that the
multisensory prior information is encoded in the cross-
talks in a distributed manner. The most striking discovery
is that the cross-links and the reciprocal couplings form
an antagonistic pair and play complementary roles. Our
results reveal the crucial dependence of the optimal net-
work structure on the statistics of multisensory stimuli,
especially the prior information.

Keywords: multisensory integration; decentralized model

Introduction

The neural system can integrate multisensory cues in a near
optimal way, as predicted by Bayesian inference (Ernst &
Banks, 2002; Gu, Angelaki, & DeAngelis, 2008; Angelaki, Gu,
& DeAngelis, 2009). However, exactly how the brain imple-
ments optimal multisensory processing remains largely un-
known. To realize multisensory Bayesian inference, it is es-
sential for the neural estimator to access the information of
all sensory inputs and utilize the prior knowledge about the
sensory cues (Ma, Beck, Latham, & Pouget, 2006; Vilares &
Kording, 2011). Recordings of neuronal activities when they
are utilizing multisensory information provide evidence for the
neural representation of probability distributions and the neu-
ral implementation of Bayesian inference. For instance, in the
heading direction perception tasks, multisensory neurons that
are tuned to both visual and vestibular cues have been found
extensively in several cortical areas (Gu et al., 2008; Chen,
DeAngelis, & Angelaki, 2011). Among these areas, there are
abundant cross-talks, referring to both cross-links (which di-
rectly feed low-level inputs from one modality to another) and
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Figure 1: Bi-modality Bayesian inference. (a) The joint distri-
bution of the congruent prior with p. = 0.1 and «, = 12. (b)
The bi-modular recurrent neural network model. The popula-
tion activity in each module represents the neural estimate of
the corresponding stimulus §;. Cross-talks between the mod-
ules consists of the cross-links (red arrows) and the reciprocal
couplings (blue arrows). The yellow circles are the inhibitory
pools. (c) The green (purple) dashed line is the example likeli-
hood function of the stimulus s for modality 1(2) when x; =0
(x2 = 0.63). The green (purple) solid line is the marginal pos-
terior of modality 1(2) according to Bayes’ rule. The green
plus signs (purple crosses) are the steady state firing rates in
module 1(2) in the optimized network. « = 3.

reciprocal links (which convey integrated signals among high-
level areas) (Smith, Greenlee, DeAngelis, & Angelaki, 2017).
These areas are likely to form a decentralized architecture
where cross-talks between multiple pathways at different lev-
els play a crucial role in integrating multisensory information. It
has been shown that, for a fully correlated prior, the reciprocal
links between multisensory modules encodes the correlation
in the prior and the uncertainty of the posterior is represented
in the sampling process of the neural dynamics (W.-H. Zhang,
Chen, Rasch, & Wu, 2016). However, the functional role of
the cross-links and the interplay between reciprocal links and
cross-links remain unclear for the partially correlated prior in
general.

In this work, we address the challenging issue of how
the Bayes-optimal multisensory processing is implemented
through the coordination of cross-links and reciprocal links.
We formulate multisensory integration as a mathematical
problem of optimizing network structure under the constraint
that for a given stimulus prior, the network’s output matches



the profile of the posterior of the stimulus. This is equivalent
to requiring that the network realizes Bayesian inference when
the sensory cues are sampled from their prior over many tri-
als. Remarkably, distinct roles played by the cross-links and
the reciprocal couplings are revealed in this framework. These
results generate predictions about the structural pre-requisites
for multisensory integration, which can be tested in future ex-
periments and inspire novel artificial intelligent systems.

Multisensory Bayesian Inference with a
Partially Correlated Prior

Take the bi-modality inference as an example. Let S; and S,
denote the two external stimuli of different modalities. For con-
venience, we consider circular variables in the range |s;| < &
fori =1,2. ' The compound multisensory prior is composed
of an independent part and a correlated part (Kérding et al.,
2007; Sato, Toyoizumi, & Aihara, 2007),

p(s1,52) = (1= pc) p(s1) p(s2) + peq(s1,52). (1)

Here, the first part of the prior is merely a product of the
two marginal priors p(s;) and p(sz). The second part
q(s1,s2) describes the dependency between S and S, when
they originate from a common cause, with the probability of
them coming from a common cause denoted by p.. In this
work, we assume that the marginal priors are flat [p(s;) =
p(s2) = (27)™'], and the two stimuli are positively corre-
lated in a way described by the von Mises distribution. This
prior, which we refer to as the congruent prior, is given by
p(s1,82) = [(l —pe)+ pce"PCOS(Sl_sZ)/IO(Kp)] /472, where
kp is the concentration of the correlated prior. An instance of
this prior is shown in Fig. 1(a).

The corresponding sensory observations are X; and
X>. We assume that unisensory likelihoods are indepen-
dent von Mises distributions (Murray & Morgenstern, 2010),
p(x1,x2]81,82) =[]; € COS(Si_x[)/ZJTIo (k;) [dashed lines in
Fig. 1(c)], where k; are the reliability of the sensory observa-
tion in modality i, and Z, (-) is the modified Bessel function of
the first kind and order n introduced to normalize the probabil-
ity.

It is believed that Bayesian optimal perception in each
modality requires marginalizing the posterior distribution over
all other modalities (Kérding et al., 2007; Beck, Latham, &
Pouget, 2011). For convenience, we denote the marginal
posterior p(S; = s|x1,x2) by pm,i(s|x1,x2) [solid lines in
Fig. 1(c)]. The Bayesian estimate §; is the mean direc-
tion of the marginal posterior distribution, §; = arg¢;, where
¢i = |7 pm,i(s|x1.x2)e'* ds, and 1 is the imaginary unit. The
reliability of the Bayesian estimate is &; = A~!(|¢;|), where
A~1is the inverse function of A(k) = Z; (k) /Zo(x) (Mardia &
Jupp, 2000).

'In this work, S;,X; are random variables, and s;,x; are in-
stances of them.
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Figure 2: Optimized cross-talks. (a) The cross-links (the red
solid line) and the reciprocal couplings (the blue dashed line)
form an antagonistic pair. (b) The biases of the Bayesian (the
red solid line) and the network (the blue dashed line) esti-
mates. (c) The reliabilities of the Bayesian (the red solid line)
and the network (the blue dashed line) estimates, scaled to
the reliability of the likelihood function. Parameters: « = 3,
kp =12, p. = 0.1, and k;p = 0.9.

Two Coupled Modules Implements Optimal
Multisensory Integration

We combine two modules of recurrent neural fields and intro-
duce feedforward cross-links and reciprocal couplings to carry
out the interaction between the two modules,

b4
tU;(s.1) =—U,~(s,t)+,o/ ds’ Z [Wiﬁf(s,s')lj(s/;xj)

T =12

+ Wi (s,s")r; (s’,t)], i=1,2, 2)
where t is the neuronal time scale, U;(s,?) is the synaptic
input on the neuron preferring s in module i at time ¢, r; is
the firing rate of module i, I; is the external input on module
i, Wl'is the same-side feedforward connection in module i,
W/ is the same-side recurrent connection in module i, W
(i # j)isthe cross-links from module j to module i, and Wi;ec
(i # J) is the reciprocal couplings from module j to module
i. This network architecture is illustrated in Fig. 1(b).

In the above equation, the firing rate r; is related to
the synaptic input through the activation function r(s,7) =
f(U(s,t)). Recently, due to its success in accounting for im-
portant features of multisensory integration, such as the prin-
ciple of inverse effectiveness and the spatial principle, divi-
sive normalization has been proposed to be a canonical in-
tegration operation (Beck et al., 2011; Carandini & Heeger,
2012). Here, we incorporate the global inhibition, a mecha-
nism to achieve divisive normalization, into the activation func-
tion r; (s.1) = [Us (s.1)]%/ (1 +hip [[U; (s',z)]ids’), where
ki is the strength of global inhibition, and [x], is equal to x
when x > 0, otherwise 0 (K. Zhang, 1996).

The inputs on the two modules are assumed to represent
the likelihood functions, 7; (s;x;) = e*i 6% /27574 (k;). In
the present study, we assume that both sensory observations



have the same reliability x; = k», and simply denote it as «.
Given these inputs, the network activities at the steady state
r}(s;x1,x2) are assumed to represent the marginal posterior
distributions (the dependence on x1,x, will be omitted in the
notation of 7* in the later part). We define the mean squared
error between the stationary firing rate and the correspond-
ing marginal posterior in both modules as the loss function
L= (Zi=1,2 ffnds 7 ($) = pm,i (s]x1,x2) ||2)x1,xz' By min-
imizing this loss function with respect to the coupling weights,
one can find out what kind of couplings can facilitate the op-
timal computation of marginal posteriors when the external
inputs on the two modules are the corresponding likelihood
functions.

Network Optimization

As with most neural network models, the loss function can be
minimized through stochastic gradient descent (SGD) (Wang,
Zhang, Wong, & Wu, 2017). Although applicable to the
general case, this method is slow and subject to several
well known difficulties in training recurrent neural networks
(Pascanu, Mikolov, & Bengio, 2013). Therefore, we seek the-
oretical results under certain assumptions, which can reveal
important aspects of the networks that can be generalized.

We developed a set of basis functions derived from the
von Mises function to facilitate perturbative theoretical anal-
ysis for non-flat and partially correlated priors. An analogous
approach had been used in neural field models considering
Gaussian-shaped profiles of neural activities in an extended
domain (Fung, Wong, & Wu, 2008). Here, in the case of a
circular domain, the set of basis functions describes different
dynamical modes of the neural activity profile perturbed from
the von Mises function. For the weakly correlated congruent
prior (small p.), we can decompose the coupling weights in
terms of these basis functions and perform gradient descent
with respect to their coefficients. Since these basis func-
tions efficiently capture the features of the coupling weights,
this method not only enjoys speed, but also provide insights
into the correspondence between the neural structure and the
statistics of stimuli.

Antagonistic cross-talks

An example of the optimized network and its performance are
shown in Fig. 2. We find that the cross-links and the reciprocal
couplings are antagonistic to each other.

The reciprocal coupling is excitatory in the short range but
inhibitory at the flank [the blue dashed line in Fig. 2(a)]. The
narrow excitatory center and the broad inhibitory surround re-
semble the Mexican-hat couplings well studied in the neural
field theory (Bressloff, 2012). They serve to stabilize a more
concentrated, thus more reliable population representation in
both modules (W.-H. Zhang et al., 2016).

The cross-link behaves in an entirely opposite manner,
which is inhibitory in the short range, while excitatory in the
intermediate range, and gradually decays with minor ripples
in the long range [the red solid line in Fig. 2(a)]. This inhi-
bition in the short range is likely to cancel out redundant in-
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Figure 3: Optimized cross-talks with weight decay. (a-d) The
weight-decay factor for cross-links (the blue solid lines) Ac;oss
is 2, 8, 32, and 128, respectively. The weight-decay factor for
reciprocal couplings ( the red dashed lines) Arcip = 0. (e-h)
Arecip I8 2, 8, 32 and 128, respectively, and Across = 0. Param-
eters are the same as those in Fig. 2.

formation when the two channels carry identical information.
The broader excitatory region in the surround is advantageous
for allowing the integration of two cues with moderate dispar-
ity. The SGD-optimized couplings with the opposite prior also
show similar antagonistic patterns (data not shown).

The steady state firing rates of the optimized network are
compared with the marginal posteriors in Fig. 1(c) for x; —
X2 = 0.63. The network’s behavior at the steady state seam-
lessly captures the attraction between the two marginal pos-
teriors due to the congruent prior. For general values of the
disparity x; — x», the biases and reliabilities of the networks’
estimates share the same trend as those of the the Bayesian
optimal estimates with minor discrepancies [Fig. 2(b) and (c)].

Structural robustness

To assess the robustness of the network and the different roles
played by the two types of cross-talks, we apply weight-decay
regularization on either of them. Aqs and Arecip denote the
weight-decay factors on the L2-norm of the cross-links and
the reciprocal couplings, respectively.

When Arecip = 0, as Across increases, both of the cross-
links and the reciprocal couplings are weakened, while main-
taining their general center-surround profile [Fig. 3(a)-(d)].
When Ao = 0, as )&recip increases, the reciprocal coupling
is suppressed progressively, while maintaining its profile [red
dashed lines in Fig. 3(e)-(h)]. However, for large values of
Arecip, the cross-links are completely flipped [Fig. 3(g) and (h)].
This indicates the importance of the reciprocal couplings for a
robust network structure, in the sense that a stringent con-
straint on them may need to be compensated by substantial
changes in the cross-links.

We further investigate how the coupling profiles change
with the characteristics of the prior. The antagonistic pair
of cross-links and reciprocal couplings undergoes minor
changes to accommodate a range of p. at a fixed x, and «
[Fig. 4(a) and (b)], showing remarkable robustness. The con-
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Figure 4: The optimized cross-talks for different likelihoods
and priors. The color scale denotes the strength of the cross-
links in (a) and (c), and the reciprocal couplings in (b) and
(d). In (a) and (b), pc € (0,0.2], and «, = 12. In (c) and (d),
Kkp € (0,13], and p. = 0.1. For (a)-(d), x = 3.

centration of the correlation between the cues k;, generally
defines the range within which two cues should be integrated.
Therefore, it naturally determines the widths of the cross-links
and the reciprocal coupling [Fig. 4(c) and (d)].

Conclusion and Discussion

We have developed a theoretical framework to link the net-
work structure of the multisensory brain region to the statistics
of Bayesian inference. Information about the priors is stored
in the cross-links and the reciprocal couplings, which form an
antagonistic pair and play complementary roles in the optimal
multisensory inference. Specifically, the reciprocal couplings
contribute to the integration of correlated information and the
robustness of the network structure, while the cross-links can-
cels out the uncorrelated component in the raw inputs and
improve integration for cues with moderate disparity.

The optimal structure we found has implications to the de-
centralized architecture for multisensory information process-
ing. We have demonstrated how the prior information af-
fects the network circuitry between multisensory brain regions,
which can be compared with future neurophysiological data
as an evidence for the decentralized architecture. Further-
more, the optimal representation of the posterior distribution
will be able to facilitate causal inference in a downstream layer,
and this perturbative theoretical framework will lay the founda-
tion for our future explorations on causal inference (Shams &
Beierholm, 2010; Kérding et al., 2007).
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