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Abstract
Sequential decision making under uncertainty is a ubiq-
uitous aspect of human behaviour. For example, when
trying to locate the source of radioactive decontamina-
tion, one will typically rely on a gamma counter, which
signals the direction of the highest radiation with some
associated observation noise. Similarly, humans often
have to navigate abstract representational spaces, such
as career paths, financial investment schemes, or main-
taining a healthy lifestyle. Across all these domains, in
order to achieve a set goal, humans can only rely on cues
that are inflicted with uncertainty and which provide only
partial information about how to reach the goal in an ef-
ficient way. In the current project, we used a simulated
spatial search task to study the cognitive-behavioural and
neural underpinnings of such sequential decisions under
uncertainty. By combining artificial agent models rooted
in the theory of partially-observable Markov decision pro-
cesses with behavioural experimentation and functional
magnetic resonance imaging, we provide evidence for hu-
man decision strategies that share similarities with real-
time dynamic programming and rely on the neural repre-
sentation of task-specific belief states.
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Overview and outline
For the current project we acquired behavioural and fMRI data
from a group of 20 human participants (11 female, effective
sample size n = 19) performing a sequential decision mak-
ing task. The behavioural and fMRI data were then anal-
ysed using a model-based approach. In the following, we first
discuss the experimental task (”Behavioural methods and re-
sults: Spatial search task”) and then detail our behavioural
modelling approach (”Behavioural methods and results: Agent
models and behavioural data analysis”). After presenting the
thus obtained behavioural results, we address the project’s
neuroimaging component (”fMRI methods and results”).

Behavioural methods and results
Spatial search task. The participants’ task was to uncover
two treasures in a 5-by-5 cell grid-world (Figure 1A). On each
task attempt, participants were initially positioned in the upper-
left grid cell and had a limited number of steps at their dis-
posal. If the participant failed to visit both treasure locations
within the available step limit, the task treasure configuration
was considered unresolved and the participant relocated to
the start position on the next task attempt. Participants had

Figure 1: Spatial search task. (A). Bird’s eye perspective of
the grid-world. Participants were aware of the overall grid-
world layout, but not of the locations of the treasures, and on
each task trial were presented only with the information avail-
able to them at their current location. The dashed white line
depicts an exemplary path on which the participant discovers
one treasure before running out of available steps two steps
later. (B). Trial layout. On each trial of the task, participants
were first presented with the grid cell they currently occupied,
including its row and column indices. Next, probabilistic sen-
sor readings on the location of the treasures were presented
in the form of light and dark observation bars. Finally, partici-
pants were prompted to choose one of the location-dependent
possible directions. Upon their choice, the next trial com-
menced with the presentation of the resulting grid cell.

a maximum of three task attempts available for a given task
configuration (treasure locations) and completed 16 randomly
assigned task configurations in total. Crucially, participants
were sequentially presented with the information available to
them from a first-person grid cell perspective (Figure 1B): on
each trial of the task, participants were first presented with the
grid cell they currently occupied, including its row and column
indices. Next, participants were presented with a collection
of light and dark observation bars towards the adjoining grid
cells. These observation bars conveyed uncertain information
about the treasure locations and could be interpreted as noisy
signals of a “treasure-sensor”. Specifically, the sensor always
returned a dark bar for directions leading away from the trea-
sures, while it displayed either a light or a dark bar in the di-
rection of the treasures. The sensor’s accuracy of correctly
returning a light bar towards the treasure locations depended
on the participants’ current L1-distance from the treasures:
its readout was completely unreliable at the most distant grid
cell position and parametrically increased in accuracy as the
participant moved towards the treasures. Following the pre-
sentation of the observation bars, participants were asked to
decide to move into one of the available directions, i.e., to any



of the neighbouring grid cells. Diagonal steps or steps off the
grid were not allowed. Upon the participants’ decision, a post-
decision fixation cross was presented for a few seconds, after
which the next trial commenced with the presentation of the
resulting grid cell position. Participants were informed about
the number of remaining steps and the number of treasures
visited throughout a task attempt.

Agent models and behavioural data analysis. To formally
describe a variety of sequential decision-making strategies on
our spatial search task, and as a basis for behavioural and
fMRI data analyses, we designed a set of nine agent models.
This agent model set varies along two dimensions (Figure 2).
First, the agents differ in their internal representation of the en-
vironment (belief state-free vs. belief state-based): the belief
state-free agents do not encode a probabilistic representation
of the latent treasure locations and for their decisions only rely
on the information immediately available to them. In contrast,
the belief state-based agents entertain a belief state in the
form of a probability distribution over the latent treasure loca-
tions, which is dynamically updated on every trial in a norma-
tive Bayesian fashion. They subsequently use this belief state
when selecting an action. Second, the agents of our model set
differ with respect to their optimization goal (purely exploitative
vs. explorative and exploitative): the purely exploitative agents
use their current knowledge about the environment merely to
collect the treasures, whereas the explorative and exploitative
agents base their decisions also on the the goal of reducing
their uncertainty about the latent treasure locations.

In more detail, the agent models implement the following
sequential decision-making strategies: the belief state-free
agent A1 chooses its actions (i.e., step directions) uniformly
at random, while the belief state-free agent A2 relies on the
observation bars and always chooses a step direction marked
with a light bar. Agents A3a to A7 encode belief states about
the location of the latent treasures. Based on its trial-by-trial
belief state representation, agent A3a identifies the grid cell it
believes to contain a treasure with the highest probability and
moves towards this cell in a minimum L1-distance sense. For-
mally, this agent implements a heuristic real-time dynamic pro-
gramming approach originally proposed by (Korf, 1990) and
later elaborated on by (Geffner and Bonet, 1998). Agent A3b
employs the same strategy as A3a with the difference that, un-
til there is only one treasure left, the agent identifies the most
probable location of both treasures and moves towards the
cell which is closer to its position. Agent A4a does not identify
single grid cells possibly containing a treasure. Instead, agent
A4a takes into account its belief state distribution over all grid
cells and, by using the same heuristic real-time dynamic pro-
gramming approach as agents A3a and A3b, moves towards
that part of the grid where it expects to find a treasure with the
fewest steps. Agent A4b employs the A4a strategy until it en-
counters an ambiguous decision situation, i.e., a trial on which
there appears to be more than one best action. In such trials,
agent A4b switches to the A3b strategy and re-evaluates the

Figure 2: Agent model space.

available actions accordingly. Agents A5, A6 and A7 use their
belief state representation not only to reach the treasures as
fast as possible, but also to identify choice options that min-
imize their uncertainty about the treasure locations. Specifi-
cally, agent A5 chooses directions that promise the largest in-
formation gain in the sense of a maximized expected Bayesian
surprise (i.e., the expected KL-divergence between the cur-
rent and hypothetical belief states). Finally, the hybrid agents
A6 and A7 combine both explorative and exploitative strate-
gies: agent A6 combines the strategies of agents A3a and
A5, whereas agent A7 combines the strategies of A3b and
A5.

To assess the agent models’ behaviour on the spatial
search task, we ran a series of simulations using the same
task configurations as for the human participants (e.g., trea-
sure locations, number of available steps). To evaluate the
agent models in light of the experimentally acquired human
behavioural data, we further used a combination of maximum-
likelihood model estimation and Bayesian-information criterion
(BIC)-based model evaluation. Specifically, for each agent
model and participant we first maximized the log probability of
the participants’ choices, then computed the participant- and
model-specific BIC scores, and finally evaluated the model-
specific group BIC scores using a random-effects Bayesian
model selection procedure (Rigoux et al., 2014).

Behavioral results for participants and agents. We first
evaluated the performance of the human participants. On av-
erage, the participants solved 11.26 (SEM ± 0.67) of 14.95
solvable tasks (Figure 3A, upper panel). Due to the randomly



Figure 3: Behavioural results. (A). Participant performance
evaluated by the number of solved tasks (upper panel) and
model log evidence for each participant and agent model
(lower panel). (B). Simulated task performance of the agent
models (left panel) and cumulative BIC scores over partici-
pants (right panel).

allocated available steps a minority of the presented tasks
was not solvable. The participants’ performance was stable
throughout the experiment with no differences between runs
(F(3,70) = 0.72, p = 0.55). Moreover, we found that 59.12
% (SEM ± 3.54) of the tasks were solved within one or two
attempts and significantly less within three attempts (16.09%
SEM ± 2.19%). This indicates that participants were able to
solve most tasks using only two attempts and thus validates
our choice of limiting the available attempts to three for a task.
Next, to compare the performance of human participants to
that of the agents, we performed a series of agent simula-
tions (Figure 3B, left panel). Here, the performance of the
belief state-free random choice agent model A1 was the low-
est followed by a substantially higher performance of the be-
lief state-based directed information-seeking A5 and the be-
lief state-free reward-driven A2 agent models. Agents A3a,
A4a, A6 and A7 solved approximately 11 of the tasks with
participant configurations, which corresponded to the average
participant performance. The best performing agents were
agents A3b and A4b, with A4b solving almost all tasks. Finally,
we evaluated the agent models in light of the participants’
choice data to identify the agent model that best describes
the participants’ behaviour. As visualized in the lower panel
of Figure 3A, for 15 of the 19 participants, the BIC score was

maximal under agent model A4a. This resulted in the highest
cumulative BIC score for this model (Figure 3D). Moreover,
the protected model exceedance probability of the group-level
random-effects Bayesian model analyses for model A4a was
p ≥ 0.99. This strongly supports the conclusion that agent
A4a was the most frequently applied strategy within the group
of participants. Based on the pseudo-r2 statistic (McFadden,
1974) we found that on average, A4a explained 35.65 % (SEM
± 2.06%) of the participants choice variance. In summary,
our behavioural modelling initiative indicates that for making
sequential decisions on the current spatial search paradigm,
humans use a probabilistic representation of the task environ-
ment and primarily make decisions with the aim of uncovering
the treasures, rather than exploring their environment.

fMRI methods and results

fMRI data acquisition and preprocessing Simultaneously
with the behavioural data, fMRI data was collected on a 3T
Siemens Magnetom TrioTim syngo scanner (Siemens, Erlan-
gen) with a 12-channel head coil. 36 interleaved axial slices
(flip angle: 80, slice thickness: 3 mm, voxel size: 3 × 3 ×
3 mm, distance factor: 20 %) of echo-planar T2*-weighted
images (field of view 216 mm) were acquired with a TR of 2
seconds. fMRI data were analysed using SPM12. fMRI data
preprocessing included motion-correction, spatial normaliza-
tion to the MNI-EPI reference template, resampling to 2 mm
isotropic voxel size, and spatial smoothing using an 8 mm
FWHM isotropic Gaussian kernel.

Model-based fMRI GLM analysis Given the results of the
behavioural modelling initiative, we were primarily interested
in identifying the neural correlates of the putatively encoded
dynamic belief state representation and the ensuing action
selection process. To this end, the preprocessed fMRI data
were analysed using a model-based mass-univariate general
linear model (GLM) approach with model-based regressors
based on the group-favoured agent model A4a (Cohen et al.,
2017). Participant-level GLM design matrices comprised five
regressors of interest: the first regressor modelled trial events
in a boxcar fashion with onsets corresponding to the time of
the grid position presentation and with participant response
time-dependent durations. The second regressor constituted
a parametric modulation of the first regressor by the trial-by-
trial Bayesian surprise of the agent model A4a’s belief state
representation. The third regressor constituted a parametric
modulation of the first regressor by the trial-by-trial entropy of
the action choice distribution of agent A4a, which we used
as a proxy for the participants’ action selection process. The
fourth regressor modelled additional task information provided
to the participants during the recording session and the fifth
regressor modelled task breaks after every fourth task. All
regressors of interest were convolved with a canonical hemo-
dynamic response function. Additionally, all participant-level
design matrix included a constant run offset and six spatial
realignment parameters as nuisance regressors of no inter-
est. Participant-level voxel-wise GLMs were estimated using



Figure 4: fMRI results. (A). The model-based fMRI data anal-
yses suggest that a large network cortical-subcortical newtork
including parts of occipital, parietal cortex, and frontal, as in-
sula and striatum supports belief state representation and up-
date. (B). Action selection difficulty appears to be encoded
in posterior cingulate and cuneal cortices. (C). The model-
based GLM results of (A) and (B) are based on the dynamic
behaviour of the group-favoured agent model A4a, which is
shown here for a single task attempt. The first row visualizes
the problem state comprising the evoling location of the agent
(blue dot) and the two treasures (orange dots). The second
row visualizes the observation bars. The third row visualizes
the agent’s belief state, from which the Bayesian surprise re-
gressor used for the evaluation of (A) was derived. The last
row visualizes the choice probabilities for each accessible ac-
tion (north, east, south, west), the entropies of which formed
the basis for the action selection difficulty regressor used for
the evaluation of (B).

SPM12’s restricted maximum likelihood scheme. Parameter
contrasts of interest were obtained using unit vector contrast
weights and analysed at the group level using one-sample t-
tests. The resulting t statistic maps were thresholded at a
cluster-forming threshold corresponding to p < 10-4 (uncor-
rected) and the cluster significance assessed using their spa-
tial extent (Friston et al., 1994).

Model-based fMRI results We found a positive relation-
ship between trial-by-trial belief state updating of the group-
favoured agent model A4a and the group fMRI data in a num-
ber of areas that are considered to be part of the task posi-
tive network (Spreng, 2012; Shulman et al., 1997) (Figure 4A).
These regions include, bilaterally, the occipital cortex, the in-
ferior parietal cortex (IPC), the superior parietal cortex (SPC)
(bilateral: cluster size: 19678, peak voxel coordinates: x = -26,
y = -88, z = 18, peak voxel t-value: 14.74), the lateral frontal
cortex (LFC), the medial frontal cortex (MFC), the anterior cin-
gulate cortex (ACC) and the insula (left: cluster size: 2474,
peak voxel coordinates x = -28, y = 4, z = 48, peak voxel t-
value: 11.54; right: cluster size: 4982, peak voxel coordinates:
x = 48, y = 28, z = 28, peak voxel t-value: 11.27). More-
over, we observed increased neural activity with increased

Bayesian surprise in left and the right striatum (left: cluster
size: 553, peak voxel coordinates: x = -32, y = 20, z = 0, peak
voxel t-value: 8.36; right: cluster size: 977, peak voxel coordi-
nates: x = 32, y = 22, z = -2, peak voxel t-value: 10.07). Sec-
ond, we found a positive relationship between choice difficulty
as assessed by the entropy of agent A4a’s choice probabilities
and the group fMRI data in medial-posterior regions (Figure
4B). Specifically, significantly active clusters were identified in
the cuneus (bilateral: cluster size: 235, peak voxel coordi-
nates: x = -2, y = -90, z = 8, peak voxel t-value: 6.76), pre-
cuneus (left: cluster size: 55, peak voxel coordinates: x = -6, y
= -70, z = 18, peak voxel t-value: 5.34; right: cluster size: 138,
peak voxel coordinates: x = 16, y = -62, z = 26, peak voxel
t-value: 6.22) and the right posterior cingulate cortex (PCC;
right: cluster size: 148, peak voxel coordinates: x = 12, y =
-52, z = -2, peak voxel t-value: 6.17).

Conclusion
In summary, we found behavioural support for human se-
quential decision making strategies that mimic look-ahead
strategies reminiscent of real-time dynamic programming al-
gorithms and which are based on cognitive representations
of the uncertain task environment (belief states). Represent-
ing and updating such belief states appears to involve a large
network of cortical and subcortical areas, and utilising them
in difficult choice situations appears to involve the posterior
cingulate cortex. This work may form the basis for the devel-
oping neural population models that implement the suggested
algorithmic computations and testing these models directly on
human behavioural and neuroimaging data.
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