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Abstract: 

Deep convolutional neural networks are biologically 
driven models that resemble the hierarchical structure 
of primate visual cortex and are the current best 
predictors of the neural responses measured along the 
ventral stream. However, the networks lack topographic 
properties that are present in the visual cortex, such as 
orientation maps in primary visual cortex and category-
selective maps in inferior temporal (IT) cortex. In this 
work, the minimum wiring cost constraint was 
approximated as an additional learning rule in order to 
generate topographic maps of the networks. We found 
that our topographic deep artificial neural networks 
(ANNs) can reproduce the category selectivity maps of 
the primate IT cortex. 
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Introduction 

Abundant evidence suggests that the primate visual 
cortex consists of hierarchically structured cortical 
areas. However, the mechanisms of the topographic 
development of the areas are not well understood. 
One hypothesis is that the wiring cost derives the 
spatial organization of the brain network. Koulakov and 
Chklovskii (2001) have shown that a simple 
mathematical model with minimum wiring cost can 
reproduce the orientation preference maps in primary 
visual cortex (V1).  

Recent work has shown that particular deep artificial 
neural network (ANN) models are the best predictors 
of neurons at multiple levels of the ventral stream and 
its supported core object recognition behavior.  
However these models are not spatially mapped to 
cortical tissue, which means that they cannot yet be 
used to compare with spatial maps of the ventral visual 
stream. In this work, we tested if the wiring cost 
minimization approach, applied to deep ANNs, can 

potentially explain the topographic maps found in 
primate IT cortex. We here simply focused on 
assessing the natural emergence of face patches in 
such models. 

Methods 

Instead of directly minimize the wiring cost, we 
approximated the wiring cost as the response profile 
similarity of each pair of neurons. That is, we reasoned 
that, the more similar the profile, the closer together 
those two neurons should be to keep wiring costs low. 
We believe that this notion is consistent with 
observations that the pair-wise neuronal correlations in 
visual cortex decrease as a function of the distance of 
the neurons on the cortical surface (Smith & Kohn, 
2008; Smith & Sommer, 2013). The specific cost 
function we used was derived from the neural 
recordings in macaque IT cortex (Figure 2).   

The Topographic Deep Artificial Neural Networks 
(TDANNs) in this work are adaptations of the Alexnet 
(Krizhevsky, Sutskever & Hinton, 2012) architecture. 
The main difference is that we aimed to create a tissue 
map (2D layout) of the artificial neurons in the first fully 
connected (fc6) layer. We chose Alexnet as we take 
that to be one of the baseline models of the primate IT 
neural population (Figure 1B). Note that it is not simply 
a matter of placing the artificial neurons into a tissue 
map – the tuning of all the model parameters must be 
done under the spatial costs constraint. To do this,, 
each network unit was initially assigned a random 
position in a two-dimensional surface (the “tissue 
map”). While being optimized for image classification 
task, the networks were penalized if the response 
profile of the units did not follow the derived response 
profile. The networks were trained on the ILSVRC-
2012 dataset, which contains 1.2 million images from 
1000 object classes (Deng, Dong, Socher, Li, Li & Fei-



Fei, 2009). To test reproducibility, 10 networks were 
trained with different parameter initializations. 
 

  

Figure 1: TDANNs as models of visual cortex. (A) 
The ventral visual pathway consists of hierarchically 
structured cortical areas (Yamins & Dicarlo 2016). (B) 
TDANNs are deep artificial neural networks 
simultaneously optimized for object recognition tasks 
and topographic constraints. (C,D) The topographic 
maps of TDANNs (D) may reproduce different 
functional maps in IT cortex (C), i.e. face selectivity 
maps.   

 
Figure 2: Response profile of IT and model neurons. 
(A) The blue dots represent the distribution of 
macaque IT neurons. The red line is the fitted function 
to the data. (B) The target response profile for the 
model neurons. The darker color means the less 
penalization.  

Results 
We investigated the face-selectivity response maps of 
the model by presenting naturalistic visual stimulus 
sets (Figure 3A). The face selectivity of each neuron 
was measured as d’ for face over non-face objects 
(Aparicio, Issa & DiCarlo, 2016). As shown in Figure 
3B, the simulated tissue maps of the models 
reproduced the clustering of face-selective neurons, 

similar to the middle face patches (MFPs) in macaque 
IT cortex (Aparicio et al., 2016).  
We also estimated the spatial profile of the “purity” of 
the face clusters. The purity of each 0.5mm x 0.5mm 
grid was computed as a percentage of face-selective 
neurons. Then, the grid with the highest purity value 
was identified as the center of the cluster. The fall-off 
characteristics of the purity curve were found to be 
similar to those of MFPs (Aparicio et al., 2016), as 
shown in Figure 3C.  

 
Figure 3: TDANNs can reproduce the face selectivity 
maps. (A) Sample face (red) and object (blue) stimuli. 
(B) Face selectivity map of brain (left) and model 
(right). Red or blue neurons responded preferentially to 
faces or objects. (C) Face cluster purity curve of brain 
(left) and model (right)  

Conclusion 

In this work, we demonstrate that these new 
topographic deep ANNs (TDANNs) naturally and 
automatically produce face vs. object selectivity 
topography that is similar to that found in primate IT 
cortex. This suggests that the simple wiring cost 
minimization may derive the development of the 



topographic structure of the visual cortex. As a future 
direction, these models can be used to study the 
development of ventral stream spatial organization and 
its dependence on different types of visual experience. 
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