Corticostriatal signatures of learning efficient internal models for control
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Abstract

Control of high-dimensional, dynamical systems such as
the body or the world imposes large complexity costs on
the subserving neural hardware. We consider the hypoth-
esis that, in order to make efficient use of its resources,
the brain adaptively compresses its internal models via
reinforcement learning. We study a normative measure
of the importance of stimulus information in determining
future action-outcome trajectories which can be updated
via prediction errors. In a planning task, we found that
decision reaction times were modulated by these predic-
tions errors and that behavioral efficiency was strongly
correlated with the strength of this modulation on a per-
participant basis. Analysis of functional magnetic reso-
nance imaging data indicated that three essential com-
ponents of the model were encoded in focal cortical and
striatal regions which were known to contain the neces-
sary stimulus and action representations a priori. We
suggest these data provide preliminary evidence that the
brain monitors the efficiency of its internal models and
updates them accordingly in the associative corticostri-
atal loop and that the results of these computations are
reflected in sensorimotor loop activity and behavior.
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Introduction

In instrumental conditioning, behavioral automaticity has been
formalized into the notion of “habits”. Though much of the
neural circuitry remains to be identified, there is evidence that
dorsal areas of the striatum contains the stimulus-response
associations which generate habitual actions (Balleine &
O’Doherty, 2010). Many of the studies leading to this conclu-
sion primarily consider responses consisting of single discrete
actions such as lever-pressing. At the broader level of ex-
tended action sequences, neural signatures of “task brackets”
have been recorded electrophysiologically in rodents engaged
in a T-maze task (Smith & Graybiel, 2013). Comparatively,
these spatiotemporal patterns of neural activity which appear
to parse task behaviors into subcomponents are identified in
dorsolateral striatum (DLS). However, the response charac-
teristics of neurons in nearby dorsomedial regions (DMS) are

also dynamically modulated as a function of learning and be-
havior in the same task paradigms (Kim, Lee, & Jung, 2013;
Stalnaker, Calhoon, Ogawa, Roesch, & Schoenbaum, 2012;
Thorn, Atallah, Howe, & Graybiel, 2010) and analogous tasks
in humans (Tanaka, Balleine, & O’Doherty, 2008; McNamee,
Lilieholm, Zika, & O’Doherty, 2015). The computational basis
of the similarities and differences between neural activity in
these two regions remains an open question (Smith & Gray-
biel, 2014). Anatomically, these regions are classified as com-
ponents of two distinct corticostriatal loops with the DLS form-
ing a key node in the “sensorimotor loop” and the DMS being
part of the “associative loop”. However, the interconnections
between these areas and relatively limited cytoarchitectonic
divergence are suggestive of integrative functional contribu-
tions to control (Haber, 2016).

Here, in pursuit of a computational model of the function-
alities of these regions in control, we develop and examine
an algorithm for internal model compression via error-driven
learning. The prediction errors in the model trade off internal
model efficiency against the flexible and predictable control of
the environment. The associated reinforcement learning al-
gorithm converges to the contingency information values (see
Theory for a precise definition) of stimuli such that stimuli with
low estimated contingency information can be rationally ex-
cised from an internal model. This has multiple practical ben-
efits in terms of behavioral efficiency. First, desired actions
at such points in a control process can be pre-programmed.
Second, it implies that the same action can be deployed re-
gardless of variability in the precise stimulus input. Third, it
enables sequences of actions which are interceded by such
states to be judiciously concatenated and deployed as “open-
loop” action sequences (Dezfouli & Balleine, 2013). On the
other hand, states with high contingency information values
must be protected from behavioral automation.

Methods
Theory

Related to recent information-theoretic approaches in artifi-
cial agents such as “empowerment” (Salge, Glackin, & Polani,
2013) and “intrinsic motivation” (Schmidhuber, 2010), we
study a measure of the degree to which an agent should inte-
grate a stimulus observation into its control processes which



we refer to as contingency information value. Within a prob-
abilistic framework of associative learning (Gershman & Niv,
2012), an internal model relates different states, S and O, to
each other within a probabilistic graphical model which de-
fined by conditional probability distributions such as P(O|S).
Here, we consider an instrumental analogue of this formal-
ism and thus incorporate actions A to form the distribution
P(O|S,A) over future outcome states O. The uncertainty in
the identity of the outcome state 0o € O is captured by the
entropies H(O|S,A) and H(O|A) where the former depends
on the information provided by both the states S and actions
A while the latter is conditionally dependent on the actions
alone. The difference between these two (equal to the condi-
tional mutual information 7(0, S|A)) measures the contribution
of the identity of the intervening state S in determining future
action-outcome contingencies. This is a measure C(S) of the
information contained in the specific identities of states s € S
regarding future action-outcome trajectories:

C(S) = H(OJA)—H(0[S,A)
= I(0,S|A) (1)
Y. p(s,a,0)[L(o]s,a) —L(oa)]  (2)

where L(x) := logp(x) denotes the negative description
length of a value x of random variable X. The difference
L(o|s,a) — L(o|a) measures the amount information lost if
only the prospective action variable a is used to predict subse-
quent states o (via L(o|a)) compared to incorporating current
state information s (as in L(ols,a)). High contingency informa-
tion value implies that the identity of the intervening state s € S
is important in determining the future action-outcome contin-
gencies. If C(S) is zero, the specific identity of the state s € S
contains no contingency information regarding future action-
outcome contingencies and thus can be eliminated in a com-
pressed internal model.

We summarize the learning rules for updating estimates
of a state-action-outcome log-probabilities which is used
to model choice behavior as well as internal estimates of
stimulus-specific contingency information values C’,(s). Let
L(x) = logp(x) be the negative description length of a value
x of random variable X. Based on a learning rate o, an es-
timate [, (s,a,0) of the generative log-probability L(s,a,0) =
logp(s,a,0) can be updated after observing a trajectory T =
(75, Ta,To) @S

Liyi(s,a,0) =L (s,a,0)+a [L(T|s,a,0) — I:,(s,a,o)] )

Since states are fully observable in the task studied here,
the observation log-likelihood is L(7|s,a,0) =1log(1) if 7 =
(s,a,0) or else L(7]|s,a,0) =log(0). Practically, we buffer
p(7]|s,a,0) probabilities with very small values in order to
avoid negative infinities in the log computations. We normalize
these quantities at decision time via a softmax rule to predict
participant decisions D given a target goal g:

eBI:t (S,ll,g)

P(D, = T C  Blsad)
(D; = als, g) Zg’ eBLi(s,a.g’)

(4)

The learning rate o and choice “temperature” 3 were esti-
mated from participant decisions for each participant and the
model fit significantly better than a constant baseline choice
model. Consistent with the previous learning process, an ap-
proximate updating of C; (s) leads to the contingency informa-
tion learning rule:

¢ () =~ Eguo[Li(o|s,a) —Li(o]a)]
Scre(T) = Lipi(sla,0)—Ci(s)
él+1 (s) = é; (s) +odcpe(T) - (5)

We refer to L, 1 (s|a,0) as a credit assignment signal which
measures the degree to which a specific action-outcome can
be attributed to a particular state s. If, on average, action-
outcome combinations are not attributable to particular states,
then discriminating between such states will not aid in predict-
ing future outcomes contingent on action.

Task

We designed a challenging two-step task requiring flexible be-
havioral shifts in an environment with stochastic contingencies
(Fig. 1). Participants were cued with one goal state g € O out
of the four possible final outcomes (each associated with a
particular color in a block of trials). The decision tree “branch”
containing the goal color was indicated by the side of the
screen that the goal cue was presented on. After a delay, par-
ticipants responded with a finger or thumb button press a € A
in order to select the branch. They were then randomly pre-
sented with one of two symbol cues s € S in each branch with
equal probability of 0.5 (four distinct symbol cues over all).
Each of the two outcomes o € O available in the branch were
stochastically contingent on both actions with probabilities 0.2
and 0.8. Importantly, in the low contingency information condi-
tion, actions had the same outcome probabilities regardless of
the symbol observed. In the high contingency information con-
dition, the action-outcome contingencies reversed as a func-
tion of the symbols. Contingency information was manipulated
within participants across six blocks of trials. In two blocks,
the contingency information value in both branches was high,
in another two, it was low in both, and in another two it was
mixed. At the end of each trial, if the participant managed to
arrive at the correct goal, then they were presented with a five
dollar bill in addition to the outcome state cue. One randomly
selected trial from each block was paid out to participants.
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Figure 1: Time series of a single trial in the task.



Results

Behavior
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Figure 2: A. Bar plot of negative logarithm reaction times
(RTs) as a function of condition and experienced transi-
tion type on the previous trial. Error bars reflect the stan-
dard deviations of RTs across all participants. Note that
higher values indicate faster reaction times. B. The esti-
mated interaction strengths are plotted as a function of a
speed/accuracy trade-off measure on a per-participant basis.
For the speed/accuracy trade-off measure, the ratio between
the optimal choice rate and average reaction time was com-
puted as a function of condition and then subtracted (Low —
High). Thus, this measure quantifies the degree to which par-
ticipants’ trade-offs improve in the low condition (where the
intervening state can be rationally ignored) compared to the
high condition.

Note that the task did not require any evaluation of stimulus
contingency information in order to perform optimally. How-
ever, we observed (Fig. 2A) that the reaction time data re-
flected a significant interaction (p = 0.01) between the transi-
tion type experienced on the previous trial (whether the prob-
ability of the transition was common P(o|s,a) = 0.8 or uncom-
mon P(ols,a) = 0.2) and the contingency information condi-
tion.

Credit assignment @ outcome

Figure 3: Associative loop: mPFC/dACC. Activity in me-
dial prefrontal cortex (the ventral area of the dorsal anterior
cingulate cortex) correlated with a credit assignment signal
L(s|a,0) at the time the outcome state was observed.

Neural Activity We summarize three sets of results from
a “model-based” general linear model analysis of the func-
tional magnetic resonance imaging data acquired while par-
ticipants engaged in the task. All results are significant at
p < 0.05SVFWE (family-wise error corrected in small volumes
based on coordinates chosen from previous studies a priori
(McNamee et al., 2015)) and are presented at p < 0.005 un-
corrected. At the time of outcome presentation, activity in
mPFC/dACC (Fig. 3) correlated with the “credit assignment”
signal L(s|a,0) necessary to compute the contingency infor-
mation prediction error (see Egns. 5). At the same timepoint,
activity in dIPFC and hippocampus (Fig. 4) appeared to en-
code the prediction error itself dcpe. Shifting to the timepoint
at which which the second action was performed (Fig. 5), neu-
ral activity in two key nodes in the sensorimotor loop, namely
putamen and motor cortex, correlated with estimated contin-
gency information C(s).

Contingency information prediction error @ outcome
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Figure 4: dIPFC and hippocampus. Activity in dorsolateral
prefrontal cortex and hippocampus correlated with the contin-
gency information prediction error signal dcpe at the time the
outcome state was observed. At the time of symbol appear-
ance, activity in anterior caudate (not shown here) correlated
with the decision variable L(g|v,a) between state-action and
goal.

Discussion

We presented analyses of neural activity which appear to en-
code signals from a model which learns, via prediction errors,
if stimuli are necessary for predicting future action-outcome
trajectories. “Credit assignment” signals in mPFC/dACC cor-
related with a representation of the degree to which an
antecedent state was associated with an observed action-
outcome contingency. This is a relatively complex calculation
requiring information integration over multiple timepoints in the
trial. It was established previously that this brain region pre-
dictively encodes the representations of state, action and out-
come necessary to compute this quantity (McNamee et al.,
2015). This signal is required to compute a contingency infor-
mation prediction error which appeared to be represented in



Contingency information value @ second action

Figure 5: Sensorimotor loop: DLS and motor cortex. Ac-
tivity in these areas correlated with estimated contingency in-
formation value C(s) at the time of the second response.

other nodes of the associative corticostriatal loop. The outputs
of this learning process can make internal models and de-
pendent action selection processes more efficient (Botvinick,
Weinstein, Solway, & Barto, 2015). This was reflected in par-
ticipant behavior and the prediction errors generated by this
computation provide a mechanistic account of the observed
reaction time effects (Fig. 2). Consider an uncommon transi-
tion in the high contingency information condition, this leads
to a low credit assignment L(s|a, 0) since (a,0) is much more
likely to be observed in the alternative state. On average, this
generates a negative contingency information prediction error
dcpe(s) leading to a lower contingency information estimate
C(s) and thus lower RTs subsequently. In contrast, the credit
assignment measure for an uncommon transition in the low
contingency information condition is higher since each state
is equally unlikely to generate this transition and therefore this
drives RTs up due to a large credit assignment to the observed
state.

At the time of the response, activity in the sensorimotor loop
correlated with the estimated state contingency information
value. This is consistent with the transfer of an action repre-
sentation to motor cortex which is contingent on the observed
stimulus rather than automatically triggered by the previous
action or pre-prepared during a planning phase. This pro-
cess appeared to be modulated by the estimated importance
of the stimulus in determining future action-outcome contin-
gencies. Taken together, our preliminary results support the
idea that the brain learns and utilizes efficient internal mod-
els during model-based control and that this learning process
is driven by prediction error signals in the associative corti-
costriatal loop. This strengthens the evidence of a functional
dichotomy between dorsolateral and dorsomedial striatum but
integrates the respective roles of these regions within a com-
mon computational framework.
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