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Abstract 

Humans demonstrate a remarkable ability to infer physical 
properties of objects and predict physical events in dynamic 
scenes. These abilities have been modeled as probabilistic 
simulations of a mental physics engine akin to 3D physics engines 
used in computer simulations and video games (Battaglia, Hamrick 
& Tenenbaum 2013; Sanborn, Mansinghka & Griffiths 2013), but 
it is unknown if and how such a physics engine is implemented in 
the brain. Does the brain represent quantities corresponding to the 
key latent variables of physical objects that contribute to their 
dynamics? To find out, we used multivariate pattern classification 
analyses of fMRI data from subjects viewing videos of dynamic 
objects. The masses of depicted objects could be decoded from 
parietal and frontal brain regions previously implicated in intuitive 
physics (Fischer et al., 2016). Crucially, this decoding was 
invariant to the scenario revealing the object’s mass, as well as the 
the material, friction, and amount of motion of the object.   These 
regions may support a generalized engine for intuitive physics 
where this invariant representation of mass serves as a key 
variable.  
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Introduction 
Engaging with the world requires a model of its physical 

structure and dynamics – how objects rest on and support 
each other, how much force would be required to move 
them, and how they behave when they fall, roll, or collide. 
This intuitive understanding of physics develops early in 
childhood and in a consistent order; by 3 to 4 months of age, 
infants understand that the world is composed of bounded, 
continuous objects (Kestenbaum & Spelke, 1987; Spelke, 
Kestenbaum, Simons & Wein, 1995), by 5 months, they can 
differentiate liquids and solids using expectations about the 
behavior of nonsolid objects (Hespos, Ferry & Rips 2009; 
Hespos, Ferry, Anderson, Hollenbeck, Rips 2016), and by 
11 months they can infer an object’s weight based on its 
compression of a soft material (Hauf, Paulus, & 
Baillargeon, 2012). By adulthood, humans are capable of 
making sophisticated physical predictions in many different 
tasks requiring implicit physical reasoning or simulation 
(Battaglia, Hamrick & Tenenbaum, 2013). This body of 
behavioral evidence suggests that the brain contains detailed 
knowledge of the physical attributes of objects and the laws 

of physical interactions between them. We consider these 
concepts and the laws relating them to constitute an intuitive 
theory of physics that enables us to successfully interact 
with objects, make predictions about physical events, and 
perform novel physical tasks.  

Recent computational efforts have explained human 
physical reasoning via an intuitive physics model that is 
quantitative, approximate, compositional, and probabilistic. 
Battaglia et al. propose a computational architecture shared 
by many physics engines, with two core parts: an object-
based representation of a 3D scene (which encodes static 
variables such an object’s size and mass), and a model of 
physical forces that govern the scene’s dynamics. This type 
of simulation-based model can make robust inferences about 
configurations of many rigid objects subject to gravity and 
friction, with varying numbers, sizes, and masses (Battaglia, 
Hamrick & Tenenbaum, 2013). If such a physics model 
were implemented in the brain, we would expect underlying 
brain regions to represent relevant physical dimensions as 
concepts that generalize across scenarios. Here we applied 
pattern classification methods to fMRI data obtained from 
subjects viewing videos of dynamic objects, to test for 
invariant representations of mass in brain regions previously 
implicated in intuitive physical inference (dorsal premotor 
cortex/supplementary motor area, and bilateral parietal 
regions; Fischer et al, 2016).    

Experiments 
Participants were scanned with fMRI while performing 
physical inference, prediction, and orthogonal tasks on 
visually-presented stimuli. “Localizer” scans enabled us to 
identify key nodes of the candidate physics network in each 
subject individually, following Fischer et al. (2016). We 
then conducted three experiments to (i) test whether we can 
decode relevant  physical variables from candidate physics 
fROIs with various degrees of invariance and (ii) test the 
automaticity of these representations. 

Design 
Each scanning session included two runs of a localizer task 
from Fischer et al. (2016) which used a univariate contrast 



 
Figure 1: (A) Toppling tower task. Screenshots show an example tower from two different viewpoints during the 360° pan. 
(B) Example mass inference stimuli used in Experiments 1 and 2. Stills from splashing and compression movies depicting 
heavy objects; stills from the blowing scenario depict a light object. (C) Schematic of event-related scanning paradigm in 
Experiment 1. 

 
of physical versus color judgments on toppling tower 
stimuli to isolate regions involved in physical reasoning. 
The stimuli were 6s movies created in Blender (Blender 
Online Community 2015) depicting towers of yellow, blue, 
and white blocks (Figure 1A) that were unstable and would 
tumble if gravity were to take effect.  

In Experiment 1, 6 subjects viewed 3s movies of real 
objects interacting in various physical scenarios: splashing 
into a container of water, being blown across a flat surface 
by a hairdryer, and falling onto the soft surface of a pillow 
(Figure 1B). Three rigid 3D shapes of equal volume were 
used (a rectangular prism, a cone, and a half-sphere), and 
movies were filmed for two different colors and two 

different masses (45g, 90g) of each shape (36 total movies). 
Visual cues from the scene could be used to infer the mass 
of each object. After each movie, subjects responded to a 
text prompt (“Light or Heavy?”) with a button press 
indicating their inferred mass.  

Experiment 2 asked whether it was possible to decode 
mass from multivoxel activity in candidate physics fROIs 
during a color judgment task orthogonal to the physics task. 
Six new subjects viewed the same stimuli used in 
Experiment 1, and after each video were prompted with 1s 
of text to respond whether the object was “Light or Heavy?” 
or “Red or Orange?” Physics and color tasks were 
completed in blocks of 6 videos each.  

 
Figure 2: (A) Screenshots of example videos from Experiment 3. Top: lego cube, bottom: cardboard cube. (B) Illustration of 
invariance dimensions used for mass decoding. 
 

In Experiment 3, we asked whether mass could be 
decoded from candidate physics brain regions during a 
physical prediction task that requires mass knowledge but 
never explicitly interrogates it. We created 48 real-world 
movies. Each 6s video shows an object (made of aluminum, 
cardboard, lego, or cork) sliding down a ramp and colliding 

with a puck (half-ping-pong ball), whose initial location is 
consistent between videos (Figure 2A). Subjects answered, 
as immediately as they could, whether they predict the 
sliding object will launch the puck across a black line, 
which can lie in 3 different locations. The mass of the object 
and its coefficient of friction determine how far it will 

A	
	

B	“Where will it fall?” vs.  
“More blue or yellow?”  

C	

x 36  

mass judgments 

3 sec 

…	

3 mm voxel 
whole brain 

splash blow compress 

x 

2 volumes 

A		

Aluminum  Plastic Lego  

Cardboard Cork  

B		

low	fric+on,	low	mass	

high	fric+on,	low	mass	

low	fric+on,	high	mass	

high	fric+on,	high	mass	

si
m

ila
r m

as
s 

similar	fric*on		



launch the puck. Each of the four different materials  was 
used to make two objects, a 2.5” cube and a 2.5”x 
2.5”x1.25” object with half of the volume of the cube and 
the same surface area in contact with the ramp (Figure 2B).  

Importantly, these stimuli were designed in a way that 
orthogonalizes mass, friction, and motion in the videos 
(Figure 2B), allowing us to test whether it is possible to 
decode a generalized representation of mass invariant to 
friction and motion. Materials were chosen with densities 
such that same-volume objects made out of aluminum and 
cardboard have  the  same   mass   (30g, 15g),  and  same-
volume   objects made from lego and cork have the same 
mass (90g, 45g), while pairs along the other invariance 
dimension (aluminum and legos, cardboard and cork) share 
similar coefficients of friction with the ramp.   

Multivariate Decoding Analyses  
To test the representational content of multivoxel activity 
from candidate physics regions, decoding analyses 
(Naselaris et al., 2011; Haxby, Connolly & Guntupalli, 
2014) were run on multivoxel activity pooled across these 
fROIs. An SVM was used for classification, restricted to 
linearly decodable signal under the assumption that a linear 
kernel implements a plausible readout mechanism for 
downstream neurons (Shamir & Sompolinsky 2006; 
DiCarlo & Cox 2007). In each of 3 experiments we tested 
the invariance of physical representations by testing the 
classifier on data from conditions that differed from those in 
the data used for training along a key dimension. For 
example, to decode mass in Experiment 1, an SVM was 
trained on beta values classified as corresponding to either 
“heavy” or “light” conditions, collapsing across shape and 
color. We used two of the three scenario types (splash, 
blow, compress; see Figure 2B) to train the classifier and 
tested on the third, left-out scenario, forcing the classifier to 
generalize across physical scenarios and iterating over left-
out conditions to obtain a mean classification accuracy for 
each subject.  

Results 
In Experiment 1, situation-invariant mass decoding in the 
candidate physics system had group mean accuracy 0.64, 
which was significantly above chance (p<0.05), and was 
found numerically  in 6 out of 6 subjects. Critically, this 
representation of object mass does not depend on whether 
the object is splashing into water, being blown by a hair 
dryer, or being dropped onto a pillow: to obtain a decoding 
accuracy greater than 50%, the classifier must generalize a 
representation learned from two scenarios to a third scenario 
left out of training. Mean classification accuracies as well as 
classification accuracies for each left out scenario were 
greater than 50% in all subjects. Further, mass 
representations are not confounded with shape or color, as 
colors and shapes were represented in equal proportions for 
both masses in the training and testing data.  While this 

result mirrors the situation-invariant representations 
expected in a physics engine, an alternative hypothesis is 
that we may be decoding a prepared response to the explicit 
mass task (“Light or Heavy?” which is constant across 
scenarios). To test this hypothesis, as well as the 
automaticity of the mass representation, in Experiment 2 we 
used a design that interleaves blocks of the physics task and 
a color task on the same stimuli. This design enabled us to 
ask whether a situation-invariant mass representation can 
also be decoded from multivoxel activity during blocks 
where subjects perform the orthogonal color task where 
mass was not relevant.   

In 6 new subjects, we replicated the findings of 
Experiment 1: mean decoding accuracy 0.63 was 
significantly above chance (p<0.05), and present 
numerically in each subject individually during the mass 
task.  More importantly, mass decoding was also 
significantly above chance (mean = 0.61, p<0.05), and 
present numerically in each subject individually, during the 
color task. This result shows that mass is represented even 
when the task does not require it, and further that the 
decoding of mass we observe cannot be explained as an 
abstract response code. Further evidence against the idea 
that the mass representations reflect response codes comes 
from the fact that color decoding from the same voxel 
activity during the color task was at chance in all subjects. 
Thus the candidate physics engine does not represent all 
task-relevant dimensions and may be more specific to 
physical variables.  

In Experiment 3 we asked whether this representation can 
be decoded during a physical prediction task that requires an 
understanding of mass but does not explicitly suggest 
subjects attend to it, and tested the invariance of this 
representation to friction and motion. Experiment 3 
replicated once again our finding that mass can be decoded 
from candidate physics regions (mean accuracy of 0.60 was 
significant, p<0.05, and numerically present in each of 13 
out of 14 participants individually). Further, this experiment 
demonstrates an important new invariance of these mass 
representations beyond those already found in Experiments 
1 and 2: the mass decoding in Experiment 3 required 
generalization across the friction and material of the object 
shown (lego to cork for heavy, and cardboard to aluminum 
for light).   

Discussion 
This work tested for a physics engine in the human brain 

by asking whether brain regions previously implicated in 
intuitive physical reasoning (Fischer et al., 2016) contain 
information about the physical properties of objects, 
specifically mass. Indeed, we showed using fMRI decoding 
methods that the candidate brain regions for physical 
inference contain information about mass in 25/26 subjects 
tested. Importantly, this mass information is present even 
when mass is irrelevant to the task (Experiment 2) or when 
mass is relevant but the participant is not asked to report it 



explicitly (Experiment 3). Further, mass information is 
invariant to the dynamic scenario in which the mass of the 
object is revealed (Experiments 1 and 2), as well as to the 
coefficient of friction of the object, the material it is made 
of, and the overall amount of motion in the scene 
(Experiment 3). Taken together these results show that the 
brain regions previously implicated in intuitive physical 
reasoning represent mass in an invariant manner that would 
be expected for an intuitive physics engine.  

Importantly, the brain regions implicated in intuitive 
physical reasoning resemble those previously implicated in 
action planning, highlighting the tight link between these 
two functions. Indeed, recent work in robotics (Todorov 
2017) combined optimization with a physics model to 
design a highly efficient goal-directed action planning 
system. And fMRI studies in which humans perform actions 
(Johansson & Flanagan 2009; Loh et al. 2010; Chouinard, 
Leonard & Paus 2005; van Neunen, et al. 2012) reveal 
representations of object mass in brain regions where we 
report mass decoding in inference tasks, further 
strengthening the link between physical inference and 
action. A model-based account of physics in the brain could 
support both physical inference and action planning in the 
same underlying brain regions, which may serve as the seat 
of a neural physics engine. The suggestion of overlapping 
activation could be strengthened in future work testing 
action planning and physical inference in the same  subjects. 
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