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Abstract
Investigation of the moment-to-moment changes in brain
activity using functional magnetic resonance imaging
(fMRI) is an emerging field. However, one of the major
problems is how to represent and evaluate these temporal
relationships from the high-dimensional fMRI data. While
many linear approaches have been proposed, nonlinear
dimensionality reduction approaches may offer better so-
lutions for these high-dimensional data. In this work, we
propose a hierarchical, dimensionality reduction frame-
work for time-synchronized fMRI data based on diffu-
sion maps—a type of nonlinear embedding—labeled 2-
step diffusion maps (2sDM). For evaluation, we apply the
framework to task fMRI during a working memory task for
two large, independent datasets. By applying the embed-
ding on the time domain, we show that our framework can
detect brain states as defined by task blocks. By apply-
ing the embedding on the subjects domain, we show that
subjects can be separated by their working memory per-
formance. Together, these results show the promise of
2sDM as a nonlinear embedding framework for fMRI data.
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Introduction
Recent studies of functional magnetic resonance imaging
(fMRI) are beginning to quantify moment-to-moment changes
in brain activation or connectivity (Allen et al., 2014; Monti et
al., 2017; Lindquist, Xu, Nebel, & Caffo, 2014). A main goal
of these works is to find representative brain states—or dis-
tinct, repeatable patterns of brain activity or connectivity—as
a way of quantifying these brain dynamics. Focusing on a few
specific states operationalizes the characterization of brain dy-
namics into computational tractable problems. However, due
to the high-dimensional nature of these brain patterns, assign-
ing time points to specific brain states or even estimating the
number of brain states remain unsolved problems.

While previous works have used a range of supervised or
unsupervised methods to define brain states, linear dimen-
sionality reduction approaches, like principal component anal-
ysis (PCA), are the most widely used (Allen et al., 2014;

Monti et al., 2017). For example in (Monti et al., 2017), the
brain states estimated from PCA were moderately correlated
with the underlying task, providing evidence that the observed
brain states represented some underlying neurobiology. How-
ever, these patterns are insufficient to classify between sev-
eral task states. Classifying multiple states associated with
different, yet related tasks, would further provide evidence that
any observed brain state represents a neurobiological process
rather than simply artifacts or confounds in the data.

In this paper, we propose a hierarchical, nonlinear dimen-
sionality reduction framework based on diffusion maps for
time-synchronized fMRI data. In contrast to linear embed-
ding methods (e.g. PCA), nonlinear methods (e.g. diffusion
maps) focus on discovering the underlying manifold structure
of the data by integrating local similarities at different scales.
By focusing on local similarities rather than global similarities,
diffusion maps can better capture complex information in high-
dimensional data. We initially validate our approach on task
fMRI in two large open-source datasets. Similar to (Monti et
al., 2017), task fMRI is used instead of resting-state in order
to have different task blocks as explicit brain states in the data.
Overall, our new framework provides a novel way to detect un-
derlying brain states in order to quantify moment-to-moment
changes in the fMRI signal.

Methods
Diffusion maps
Diffusion maps (Coifman & Lafon, 2006) is part of a broad
class of nonlinear dimensionality reduction algorithms; specif-
ically, diffusion maps gives a global description of the data
by considering only local similarities and is robust to noise
perturbation. One of the capabilities of diffusion maps is
to reveal underlying intrinsic states governing the data. As
such, these approaches should be suitable to detect repeat-
able brain states in fMRI data. The diffusion maps algorithm
is as follows. The input is the similarity matrix S between
vectors of data, which can be computed using various ker-
nels like the Gaussian kernel or the cosine similarity. From
the similarity matrix, the rows are normalized by P = D−1S,
where Dii = ∑ j Si j. Eigendecomposition is then performed on



this row-stochastic matrix, resulting in the eigenvalues λi and
eigenvectors ψi. The corresponding diffusion maps is then
Ψt(x) = (λt

1ψ1(x),λt
2ψ2(x), . . . ,λt

kψk(x)), where t is the dif-
fusion time. In practice, eigenvalues of P typically exhibit a
spectral gap such that the first few eigenvalues are close to
one with all additional eigenvalues much smaller than one. In
this case, the diffusion distance, which is the Euclidean dis-
tance between points in the embedding space, can then be
well approximated by only these first few eigenvectors (Nadler,
Lafon, Coifman, & Kevrekidis, 2006). Thus, we obtain a low-
dimensional representation of the data by considering only the
first few eigenvectors of the diffusion maps. Intuitively, diffu-
sion maps embeds the data points closer when it is hard for
the data to escape the local region within time t.

Diffusion maps is similar to the normalized cuts algorithm
(Shi & Malik, 2000) which has previously been used in fMRI
analysis (Shen, Tokoglu, Papademetris, & Constable, 2013).
Normalized cuts aims to find the eigendecomposition of D−1L
where L is the Laplacian matrix L = D−S. The eigendecom-
position of D−1L yields the same eigenvectors ψ as for diffu-
sion maps, with corresponding eigenvalues 1−λ. Thus, per-
forming k -means clustering on diffusion maps coordinates as
we do below is mathematically similar to spectral clustering.
The key difference is that in diffusion maps the coordinates
are weighted by the corresponding eigenvalues.

2-step diffusion maps

Figure 1: Framework of 2sDM applied to the time domain.

Based on diffusion maps, we design a hierarchical dimen-
sionality reduction framework for multi-subject fMRI BOLD
time series. Under the assumption that subjects’ fMRI re-
sponse is time-synchronized, we represent fMRI time series
data as Xi ∈ RT×V , i = 1, ...,m. Here T is the number of
frames in the scan, V is the number of voxels or brain re-
gions, and m is the total number of subjects we have. We

label this framework 2-step diffusion maps (2sDM). Note that
2sDM can be applied to either domains of the data, resulting
in a lower-dimensional representation of either time, subjects
or brain regions. Here we illustrate the framework by apply-
ing the reduction on the time domain. Reducing the other two
domains just requires trivial adaptation.

To perform 2sDM to the time domain, first, we apply dif-
fusion maps dimensionality reduction on every single subject
Xi in every time frame, reducing each subject’s V voxels or
brain regions to a K1-dimensional Euclidean space. Then, we
concatenate all the subjects’ new representation to a single
matrix Xc ∈ RT×(mK1). Next, we perform a second-step diffu-
sion maps to further reduce the dimensions of this matrix to a
vector of length K2. As a result, the final time frame represen-
tation matrix is Xr ∈ RT×K2 .

The first-step diffusion maps produces a cleaner represen-
tation of the fMRI data, as diffusion maps reduces noise. The
reasoning of performing an embedding based on the results
of the first-step embedding is that the Euclidean distance in
the diffusion coordinates approximates the diffusion distance.
As such, if two concatenated vectors have relatively small Eu-
clidean distance, it suggests that for all of the subjects there
is small diffusion distance between the two time frames. Our
framework is similar to related work on integrating information
from multiple sensors by applying multiple embeddings (Rabin
& Averbuch, 2010). However, our framework keeps the mag-
nitude of diffusion coordinates while the previous approach
discards this magnitude by normalizing the coordinates. As
the magnitude carries information about the diffusion process,
retaining this information should increase the utility of the sec-
ond diffusion map.

Experimental setup

We assess the performance of 2sDM using working mem-
ory tasks on two independent fMRI datasets from the Human
Connectome Project (Van Essen et al., 2013) and Philadel-
phia Neurodevelopmental Cohort (PNC) (Satterthwaite et al.,
2016). From the HCP dataset, subjects executed interleaved
blocks of 0-back and 2-back working memory tasks. Each
subject had two scans corresponding to the left-right (LR) and
right-left (RL) phase encoding direction where the task block
orders were different for the two scans. 515 subjects from the
HCP dataset were retained after removing subjects for high
motion or incomplete data. For the PNC dataset, subjects ex-
ecuted interleaved blocks of 0-back, 1-back and 2-back work-
ing memory tasks. 571 subjects were retained after remov-
ing subjects for high motion or incomplete data. For both
datasets, 268 timecourses of fMRI data were extracted using
a whole-brain, functional atlas (Shen et al., 2013).

Results

Temporal embedding: HCP dataset

As our framework does not rely on the temporal structure, we
first concatenate time series of LR and RL acquisition. While
this increases the number of time points to be used in the em-



bedding, concatenation requires our algorithm to be robust to
noise differences across the different acquisitions. We first
examine the first three coordinates of the embedding in 3D
space (Fig. 2). Four directions are clearly revealed in the em-
bedding. Fixation, 0-back and 2-back task each takes one di-
rection. The last direction consists of points from both 0-back
and 2-back task blocks. To further assess the embedding, we
perform k -means clustering using only the first three embed-
ding coordinates. Fixation, 0-back and 2-back form individ-
ual clusters (Fig. 3) as expected from the embedding shape
(Fig. 2). Further, the embedding direction consisting of 0-back
and 2-back task blocks can be explained from the clustering
results. Cluster 3 forms after the task cue occurs, which cor-
responds to when the subjects are viewing the task cues. The
task block order is visualized as the background color of Fig-
ure 3. Timing of the task block is delayed by 5 seconds to
account for the lagging in BOLD signals.

Figure 2: 2sDM embedding of the HCP dataset. Points are
embedded in the 3D space by the first three non-trivial coor-
dinates of diffusion maps. Each point represents a time frame
and the point is colored by the task block type.

Although our 2sDM can reveal overall task patterns by in-
corporating data from all subjects, individual differences in
brain states during a working memory task likely exist. For
example, some subjects may exhibit larger shifts of their brain
states during task blocks, and some subjects may exhibit a
longer delay in entering the state associated with specific task
blocks. To investigate these individual differences, we se-
lected a subsample from the HCP subjects consisting of the
50 subjects with the lowest working memory accuracy and 50
subjects with the highest working memory accuracy. Using
only these subjects, we recalculated our 2sDM. As shown in
Fig. 3b, the patterns of the states for the best performers are
more consistent with the task whereas for the worst perform-
ers they are more perturbed, suggesting distinct patterns of
brain states for the best and the worst performing subjects.

Figure 3: K -means clustering result on embedded coordi-
nates of HCP time frames combining LR and RL acquisition.
Cluster 1 corresponds to fixation, cluster 2 corresponds to 0-
back, cluster 3 corresponds to 2-back, cluster 4 corresponds
to cue change. a) shows the clustering result using all the sub-
jects’ information. b) shows the clustering result using only the
50 subjects with the best or worst working memory accuracy.

Subjects embedding: HCP dataset
Using the same subset of subjects (i.e. the 50 subjects with
the worst working memory accuracy and the 50 subjects with
the best working memory accuracy), we performed embed-
ding across subjects, rather than across time. In contrast
to the temporal embedding where information across differ-
ent subjects is gathered together, subject embedding gathers
temporal information to project subjects with similar tempo-
ral patterns of brain states closer together in the embedding.
In the embedded 2D space (Fig. 4), subjects with the best
working memory performance (yellow points) are clearly pro-
jected together; subjects with the worst performance, espe-
cially those with less than 70% accuracy, are mainly projected
on the other side of the space. From the embedding, it can
be observed that the best performers share similar and steady
brain states. In contrast, the worst performers exhibit inconsis-
tent brain states patterns, as displayed to more largely spread
across subjects in the embedding.

Subjects embedding: PNC dataset
Similar to the HCP dataset, we selected the 50 best and 50
worst performing subjects from the PNC dataset for subject
embedding. In contrast to the HCP dataset, for the PNC
dataset, we used out-of-scanner performance on a working
memory task as accuracy during the actual fMRI task was not
available. While the exact grouping of subjects (e.g. the 50
best performing subjects) may be different if in-scanner accu-
racy was used, we expect that the groupings would be similar
as working memory performances are generally highly repeat-



able. The 2D embedding (Fig. 4b) shows similar patterns as
the HCP dataset. The best performing subjects are clustered
together; while, the worst performing subjects are scattered
as outliers around the major cluster.

Figure 4: 2sDM embedding of the HCP and PNC dataset.
Points are embedded in the 2D space by the first two non-
trivial coordinates of diffusion map. Each point represents a
subject. a) shows the embedding of HCP subjects, colored by
in-scanner working memory task accuracy. b) shows the em-
bedding of PNC subjects, colored by out-of-scanner working
memory task correct responses.

Conclusion
In this paper, we propose a hierarchical diffusion maps-based
fMRI data embedding framework. In two independent task-
fMRI datasets, we showed that 2sDM sufficiently separates
between different conditions in task and subjects, suggesting
our framework can extract meaningful brain states from fMRI
data. While this framework is designed for time-synchronized
task fMRI data, recent methods have been developed to cre-
ate time-synchronized resting-state fMRI data (Joshi, Chong,
Li, Choi, & Leahy, 2018). Thus, for future work, we will adapt
our framework for resting-state fMRI to investigate brain states

when a subject is not explicitly performing a task.

Acknowledgments
Data were provided in part by the Human Connectome
Project, WU-MinnConsortium (Principal Investigators: David
Van Essen and Kamil Ugurbil;1U54MH091657) funded by the
16 NIH Institutes and Centers that support the NIH Blueprint
for Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University. The au-
thors would also like to thank Ronald Coifman and R. Todd
Constable for their support. GM is supported by the United
States-Israel Binational Science Foundation and by the NSF
(2015582) and the NIH (1R01HG008383-01A1).

References
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele,

T., & Calhoun, V. D. (2014). Tracking whole-brain connec-
tivity dynamics in the resting state. Cerebral cortex , 24(3),
663–676.

Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied
and computational harmonic analysis, 21(1), 5–30.

Joshi, A. A., Chong, M., Li, J., Choi, S., & Leahy, R. M. (2018).
Are you thinking what i’m thinking? synchronization of rest-
ing fmri time-series across subjects. NeuroImage, 172,
740–752.

Lindquist, M. A., Xu, Y., Nebel, M. B., & Caffo, B. S. (2014).
Evaluating dynamic bivariate correlations in resting-state
fmri: a comparison study and a new approach. NeuroIm-
age, 101, 531–546.

Monti, R. P., Lorenz, R., Hellyer, P., Leech, R., Anagnos-
topoulos, C., & Montana, G. (2017). Decoding time-varying
functional connectivity networks via linear graph embedding
methods. Frontiers in computational neuroscience, 11, 14.

Nadler, B., Lafon, S., Coifman, R. R., & Kevrekidis, I. G.
(2006). Diffusion maps, spectral clustering and reaction
coordinates of dynamical systems. Applied and Computa-
tional Harmonic Analysis, 21(1), 113–127.

Rabin, N., & Averbuch, A. (2010). Detection of anomaly trends
in dynamically evolving systems. In AAAI fall symposium:
Manifold learning and its applications.

Satterthwaite, T. D., Connolly, J. J., Ruparel, K., Calkins,
M. E., Jackson, C., Elliott, M. A., . . . others (2016). The
Philadelphia Neurodevelopmental Cohort: a publicly avail-
able resource for the study of normal and abnormal brain
development in youth. Neuroimage, 124, 1115–1119.

Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T.
(2013). Groupwise whole-brain parcellation from resting-
state fmri data for network node identification. Neuroimage,
82, 403–415.

Shi, J., & Malik, J. (2000). Normalized cuts and image seg-
mentation. IEEE Transactions on pattern analysis and ma-
chine intelligence, 22(8), 888–905.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E.,
Yacoub, E., Ugurbil, K., . . . others (2013). The WU-Minn
human connectome project: an overview. Neuroimage, 80,
62–79.


		2018-08-20T14:49:49-0500
	Preflight Ticket Signature




