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Abstract
Recent years have seen a renaissance in artificial in-
telligence (AI) technology and its applications, includ-
ing robotics. Many of these solutions focus on solving
a particular problem in a particular domain or environ-
ment. Creating robust and generalizable AI solutions is
an area of great interest with applications to many dif-
ferent problem spaces. Biological organisms and bio-
logical nervous systems serve as an existence proof that
such a generalized intelligence solution is possible. We
develop and explore a framework for the simulation of
biological networks and extend these simulations to a
real-world robotic platform. We focus our initial explo-
ration on a simple, well-defined and highly stereotyped
biological neural network (i.e., connectome) derived from
the Caenorhabditis elegans nematode. We implement a
reference anatomical connectome on a robotic platform,
then perturb the network to study the influence of the
network parameters on output behavior. Target pertur-
bations can be derived from neuroscience, robotics, or
machine learning domains. This platform is useful for
exploring the relationship between learning and behavior
for biological organisms and robots. To foster further dis-
covery, we share an open source, easy to use framework
with visualization and simulation capabilities and provide
an interface to a TurtleBot using ROS.
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Introduction
There has been great progress in the previous decades de-

veloping Artificial Intelligence techniques for robotics applica-

tions, but there are still critical limitations in terms of general-

izability, learning, and robustness. One approach to overcom-

ing these limitations is the study of biological systems (Lake,

Ullman, Tenenbaum, & Gershman, 2017). Understanding the

relationship between behavior and information processing in

neural circuits is one of the core challenges in neuroscience,

and may lead to neurally-inspired algorithms for robotic appli-

cations. Even organisms with small nervous systems, such

as the nematode C. elegans (White, Southgate, Thomson, &

Brenner, 1986), show robust behaviors such as avoidance and

exploration. Simulating neural circuit activity during closed-

loop behavioral tasks provides a means to study the compu-

tational principles underlying behavior, which might then be

applied to robotics.

Simulating a complete nervous system requires that sys-

tem’s connectome, the structural or functional “wiring dia-

gram.” A connectome is conventionally represented as a

graph, a mathematical object with vertices, directed edges,

and attributes. By generating connectomes from electron mi-

croscopy, anatomical graphs are derived where vertices rep-

resent individual neurons and edges are the directed synaptic

connections (Lichtman & Sanes, 2008). Simulation of neural

circuits also requires an understanding of neuronal dynamics

and neuromodulation (Bargmann & Marder, 2013), as differ-

ent neural time dynamics can generate different responses

from the same underlying connectome.

As a model organism, C. elegans offers significant promise

for closed-loop simulation. The C. elegans connectome is

well-characterized; the hermaphrodite nematode contains ap-

proximately 300 neurons and 8000 chemical and electrical

synapses (White et al., 1986). While the neuronal dynam-

ics and role of neuromodulation are not fully understood, neu-

ral circuits have been proposed for many behaviors such as

touch-withdrawal (Chalfie et al., 1985) and exploration of en-

vironments (Gray, Hill, & Bargmann, 2005). New patch clamp-

ing results also give insight into the dynamics of individual

neurons (Lockery & Goodman, 2009).

Due to the promise of C. elegans for closed-loop simulation

of behavior, the OpenWorm project developed detailed simu-

lation of all the cells in the worm relevant to sensing and motor

activity (Szigeti et al., 2014), using models of channel dynam-

ics. Other recent simulation efforts compared the worm’s tap-

withdraw response to optimal control policies (Lechner, Grosu,

& Hasani, 2017) and proposed a Simulink model of the worm

using single-compartmental models (Hasani, Beneder, Fuchs,

Lung, & Grosu, 2017).

An alternative approach is to implement dynamic simula-

tions of the C. elegans connectome on physical, robotic plat-

forms. These studies apply the neural computational prin-

ciples underlying C. elegans behavior to robot control, and

enable comparison between biologically-inspired algorithms

and traditional approaches. One such robotic platform im-

plemented a six-neuron simulation of C. elegans chemo-

taxis (Morse, Lockery, & Ferr

´

ee, 1998), but did not simulate

the entire worm nervous system. More recently, a robotic

system simulating the entire C. elegans connectome was

demonstrated (Busbice, 2014). This robot exhibited the tap-

withdrawal behavior of the nematode, but had technical limita-

tions preventing easy modification of the connectome or intro-

duction of new models of neural dynamics.

Methods
As a next step in exploring neurally-inspired robotic control

and the relationship between neural computation and behav-

ior in C. elegans, we present a novel method to translate an

arbitrary graph (either biologically derived or synthetic) to a



ROS-compatible robotic platform. We provide example imple-

mentations for neuron simulation, sensory input, and motor

output, in an extensible, flexible approach.

Network Simulation and Visualization
To enable the simulation and analysis of highly recurrent,

time-dependent, biofidelic spiking neurons, we propose Elec-
trode, a platform that can closely model electrophysiological

processes at variable levels of simulation resolution. Un-

like similar frameworks that require specialized neuromor-

phic hardware, such as SpiNNaker (Knight, Tully, Kaplan,

Lansner, & Furber, 2016) and TrueNorth (Merolla et al.,

2014), Electrode runs on consumer hardware, enabling high-

speed neurophysiological simulation on hardware platforms

ranging from personal laptops to high-performance comput-

ing clusters. Although comparable software simulators exist

(Stimberg, Goodman, Benichoux, & Brette, 2014), Electrode

allows arbitrary input and output by placement of simulated

electrodes. Simulated electrodes can be inserted at any point

in the network to represent input (i.e., stimulation), output (i.e.,

recording), or both (as in biological experiments). In this way,

we aim to make it possible to replicate biological experiments

with Electrode’s “in-silico” neurons.

By using a novel, flexible abstraction for a neuron, we can

enable simultaneous simulation of different levels of detail for

different parts of a single model. Namely, we may use electro-

physiological neuron models in critical portions of the process-

ing unit, and use simplified neuron models for surrounding

neuron populations, as has been previously demonstrated in

similar simulation efforts (Hawrylycz et al., 2016). By chang-

ing the paradigm of bio-fidelic neuron simulation at scale, we

believe that Electrode could open the door for defining inno-

vations in the world of neuro-inspired machine learning. For

larger networks, we are exploring an implementation of these

ideas using distributed processing in highly parallel languages

to simulate large neuron populations at faster speeds than are

possible with existing implementations.

We also provide a visualization tool that enables qualitative

insight into the neural activity underlying behavior. Our visual-

ization engine, written in p5.js (p5js.org), provides a real-time

visual representation of the neural activity of a simulated net-

work (Figure 1).

Our simulation approach can be used to explore learning

and neuroscience functionality toward improving robotic func-

tionality while tailoring the simulation fidelity to the application

domain.

Graphs to Robots
Our Python implementation simulates an arbitrary weighted

directed graph from disk as a neuronal network, allowing vir-

tual ‘electrodes’ to be attached at network inputs and outputs.

We leverage the Robot Operating System (ROS) (Quigley

et al., 2009), a collection of software that provides tools for

robotic software development. A main concept in ROS is the

use of topics, which facilitate the passing of data from different

processes. Processes, or nodes, can subscribe to or publish

Figure 1: Our visualization engine; Neurons are represented

on the left side in arbitrary order, with motor neurons and

muscles colored red (Busbice, 2014). Depolarization is rep-

resented by the expansion of the pale blue highlights. On the

right side, a cyan worm leaves a gray trail to enable the study

of behavior of a simple simulated organism side by side with

its neural activity.

to topics. In addition, ROS is supported by a large commu-

nity of roboticists contributing significant functionality includ-

ing perception, mapping, navigation and obstacle avoidance.

We are exploring how these capabilities can be combined with

biological networks to improve learning and performance.

Results
We demonstrate our generalized connectome-

to-robot pipeline on a TurtleBot robot

(https://www.turtlebot.com/).

For our neuronal network, we chose a C. elegans connec-

tome described in the NeuroML (Gleeson et al., 2010) format.

This format allows application-specific metadata, which in the

case of our simple connectome would represent the synap-

tic weight between neurons. Our method supports loading

any weighted directed graph that can be loaded by NetworkX

(Hagberg, Swart, & S Chult, 2008). We parsed the C. ele-
gans connectome file created from earlier robotic experiments

(Busbice, 2014), which defines the synaptic weights based on

the number of connections each pair of neurons shared. In

the case of our C. elegans simulation, our inputs are sensory

neurons and the outputs are motor neurons, although these

can be user-specified.

We chose the mechanosensory neurons on the nose of the

worm to be connected to the frontal 60� of a laser distance

scanner on a TurtleBot. A distance closer than 0.5m will cause

all of the mechanosensory neurons to fire. In order to control

the movements of the robot, we followed an earlier implemen-

tation (Busbice, 2014), wherein the voltage ratio between all

left and right motor neurons is used to determine direction of

locomotion.

For the purposes of demonstration and fast implementation

on a robot, we use the Integrate and Fire simple spiking neu-

ron model, in which neurons accumulate voltage based on

weighted inputs and fire when that accumulation reaches a



certain value. The firing of a neuron resets its voltage.

For simulation of the robot, we used Gazebo (Koenig &

Howard, 2004). This software integrates closely with ROS and

provides nodes that give the position, orientation and other

state properties of the robot. The simulated world is an open

space within a barrier ring with radius 9.5m. The robot was

placed in the center of the ring with the same orientation at

every iteration. While the robot was not receiving sensory in-

put (i.e when it was not ”touching” anything), the connectome

received “food” signals by firing the gustatory neurons. This is

necessary in order to encourage the robot to explore.

Connectome perturbation
Scientists have identified the GABAergic neurons expressing

the gene unc-25 (Jin, Jorgensen, Hartwieg, & Horvitz, 1999),

which is the same gene targeted by (Xu & Chisholm, 2016) in

their ablation study, which led to inhibited locamotion. We fur-

ther identified the dopaminergic and serotonergic neurons and

ablated each of these groups, validating that we can change

robot behavior through a targeted approach. These groups of

neurons can be seen in Table 1.

Table 1: Sensory Neurons

Neuron Neurotransmitter

AVL, DD, DVB, RIS, RME, VD GABA

NSM, RIH, ADF, AIM Serotonin

ADE Dopamine

Figure 2: Movement of simulated robot traces, each initialized

in scenario center. Upper left: Unmodified; Upper right: No

GABAergic neurons; Lower left: No serotonergic neurons;

Lower right: No dopaminergic neurons.

The results of this experiment can be seen in Fig 2. Each

image represents the paths of 10 simulated robots, each of

which was run for 10 real-time minutes. The robots’ posi-

tions were recorded continuously and plotted. Removing the

(a) s = 1 (b) s = 2 (c) s = 5

Figure 3: Simulated movement with randomized weights.

GABAergic neurons has prevented the worm from reversing

when it came into contact with the barrier. In addition, it

caused decreased overall locomotion: The unmodified model

attained an average speed of 0.12 m/s (SEM 0.0038) and

the modified model attained an average speed of 0.078 (SEM

0.0094). This is consistent with the outputs (though not nec-

essarily the mechanism) obtained previously (Xu & Chisholm,

2016).

Finally, in order to determine the stability of neuronal net,

we varied the weights by normally distributing them around

the original weights with varying standard deviations. These

results can be seen in Fig. 3. This shows that increasing the

randomness of the network increases the exploratory nature

of the robot and the randomness of its movements. Now that

we have shown the ability to modify the network, we next plan

to modify weights using learning algorithms to promote task

specific behavior.

Discussion

In this work, we provide an easy-to-use framework to explore

connectome function and robotic applications.

We note that many aspects of our model are not bio-fidelic,

but that our framework is modular and can be extended to in-

crease model fidelity if desired; the fidelity required may vary

depending on the application. We briefly outline a few limita-

tions of our model: (1) Neuron model: It is not well known how

every C. elegans neuron operates, and while there have been

developments to show that some C. elegans neurons use

a plateau-modeled neuron (Lockery & Goodman, 2009), we

chose to use this simple spiking model in order to implement

it on lower level hardware. (2) Synaptic weight choice: Al-

though we recognize that the weights of our neuronal network

are derived from connection count – a measure that does not

fully describe synaptic weight, we chose to use these weights

because it is the best estimate we have of all the weights of

the C. elegans connectome. (3) Robotic control: Our control

model does not represent the movement of the C. elegans
well. However, it was chosen for mathematical simplicity and

reproducibility. Due to the abstraction of our method, we allow

more complicated or application-specific locomotion models

to be implemented.

As previously mentioned, our choice of the robotic simu-

lation is centered around the ROS and Gazebo tools. This

simulation environment offers the ability to quickly simulate



new environments, robots and sensors with varying complex-

ity and available degrees of control. As we expand our work in

this space, our goal is to evaluate the performance of different

sensing modalities, ability to transfer knowledge to new robotic

platforms, and create increasingly complex environments to

assess the biological system’s meta-learning capabilities.

In this work we aim for reproducibility and mathematical

simplicity, toward creating a bio-inspired platform to explore

connectome reconstructions and assess their applications,

opportunities and limitations. We provide tools and abstrac-

tion layers to allow others to write and implement more com-

plex models toward more bio-fidelic behavior.

We extend previous work (Busbice, 2014) by designing and

implementing a generalized connectome-to-robot pipeline.

We leverage this pipeline to simulate the effects of net-

work changes toward exploring bio-inspired robotic applica-

tions. All of our work and data is open source, available at

https://github.com/aplbrain/.

We hope to extend this initial work to more detailed sim-

ulation of neuronal dynamics and more biophysically plausi-

ble learning rules, with the ultimate goal of developing robust

exploration strategies for simple robots. Biological wiring dia-

grams of the brain (i.e., connectomes) offer great promise to

inform artificial intelligence applications such as robotics.
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