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Abstract: 

Deep neural networks (DNNs) excel at complex visual 
recognition tasks and have successfully been used as 
models of visual processing in the primate brain. 
Because network training is computationally expensive, 
many computational neuroscientists rely on pre-trained 
networks. Yet, it is unclear in how far the obtained results 
will generalize, as different weight initializations might 
shape the learned features (despite reaching similar 
testing performance). Here we estimate the effects of 
such initialization while keeping the network architecture 
and training sequence identical. To investigate the 
learned representations, we use representational 
similarity analysis (RSA), a technique borrowed from 
neuroscience. RSA characterizes a network’s internal 
representations by estimating all pairwise distances 
across a large set of input conditions – an approach that 
is invariant to rotations of the underlying high-
dimensional activation space. Our results indicate that 
differently initialized DNNs trained on the same task 
converged on indistinguishable performance levels, but 
substantially differed in their intermediate and higher-
level representations. This poses a potential problem for 
comparing representations across networks and neural 
data. As a path forward, we show that biologically 
motivated constraints, such as Gaussian noise and rate-
limited tanh activation functions can substantially 
improve the reliability of learned representations. 
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Introduction 

To date DNNs are the best model class for predicting 
activity in multiple regions of the primate visual cortex. 
Network internal representations result from training on 
millions of images, and are shaped by network 
architecture, input statistics, learning algorithm, and 
objective function (Kietzmann, Mcclure, & Kriegeskorte, 
2017). Apart from these main driving forces, the initial 

assignment of random weights may affect network 
internal features, despite oftentimes having a negligible 
effect on test performance. Such random effects could 
potentially raise problems for comparisons of internal 
representations between different DNNs, or, as in 
computational neuroscience, between representations 
in artificial and neural networks. The overall question 
therefore is, how consistent network internal features 
are across different weight initializations, and whether 
specific training parameters exist that alleviate potential 
problems. The latter include, among others, the type of 
activation function (here: ReLU vs. tanh, but for 
biologically more plausible examples, see Bhumbra, 
2018), as well as the level and type of dropout 
(Gaussian or Bernoulli) during training and test. 
Moreover, it may matter where the noise is applied: to 
the activations (“drop-out”), to the weights (“drop-
connect”), or to both (e.g. “Spike-and-Slab Dropout”; 
(McClure & Kriegeskorte, 2016; Srivastava, Hinton, 
Krizhevsky, Sutskever, & Salakhutdinov, 2014). To start 
a systematic investigation, we here first estimate the 
overall magnitude of the effect. We then test for factors 
that may influence the consistency of learned 
representations. The size of the effect is calculated by 
training multiple identical networks with different weight 
initialization. The effect size is then compared to the 
effects of different input statistics in terms of image-set 
and category-selection. Finally, we investigate in how 
far limits imposed on the activation levels and activation 
noise can constrain training outcomes to lead to more 
consistent representations. 



Methods 

Representational similarity analysis  

To compare different network instances, we here use 
Representational Similarity Analysis (RSA; 
Kriegeskorte, Mur, & Bandettini, 2008), a widely used 
neuroscience method to compare representations 
within and across measurement modalities. RSA is 
based around the concept of representational 
dissimilarity matrices (RDMs), which, across a large set 
of input stimuli, store all pairwise distances between 
stimulus-driven pattern activations. The resulting matrix 
characterizes the representational space spanned by 
the network solution, as it depicts the geometric 
relations of all different input stimuli w.r.t. each other. By 
relying on distances, RSA is invariant to rotations in the 
input space. It therefore directly offers itself to 
comparisons across deep neural network instances. As 
a distance measure, we use correlation distances of the 
layer activations. 

Experimental design, and DNN architecture 
and training 

Our experiments are based on the idea of 
representational consistency. Given two network 
instances, we first compute network RDMs for each 
layer using a large set of 1000 images, and 
subsequently test how similar the corresponding RDMs 
are. Given the properties of RDMs, if two networks span 
the same space, but one is a rotated (or scaled) version 
of the other, then the RDMs will be highly correlated, i.e. 
they will exhibit large representational consistency. In 
the first experiment, we investigate how the initial set of 
weights (random seed 1 vs. 2) can affect internal 
representations and how the effects compare to using 
different input statistics via different training sets for the 
same category structure or different output categories. 
We then test in how far the network consistency is 
affected when Gaussian noise is introduced to the 
activations during training and when using a range-
limited activation function (tanh) rather than ReLU 
(experiment 2). 

The architecture used throughout the paper is 
reminiscent of VGG-S (Chatfield, Simonyan, Vedaldi, & 
Zisserman, 2014), but the fully-connected layers were 
replaced by convolutional layers to reduce the amount 
of trainable parameters by ~90%. In addition, we 
adapted the amount of maps (96, 128, 256, 512, 512, 
1024, 1024) and the kernel sizes (7, 5, 3, 3, 3, 3, 3). 
Training was performed on CIFAR 10, which consists of 
10 categories with 5.000 training, and 1000 test images 
each. 

 

Experiment I We first investigated how RDM 
consistency is influenced by the initial set of weights, 
holding all other training aspects constant. To be able 
to judge the size of the effect, we relate it to the 
differences in consistency that result from training on 
different image sets while starting from identical 
weights. First, we tested for the effects of training on the 
same categories, albeit with different input images 
(using 10 categories, each with 2,500 of the 5000 
training images). We refer to these subsets of CIFAR 
10 as “CIFAR 10, set 1 and 2”. Following a 2x2 design 
(random seed 1 and 2 vs. “CIFAR 10, set 1 and 2”), four 
DNNs were trained for 250 epochs each, using a ReLU 
activation function. One step further, we asked how 
training on different image- and category sets 
influences RDM consistency. For this, we split the 
training set of CIFAR 10 into two sets of five categories 
each. Each category contained the full 5,000 training 
images, such that the overall amount of training images 
was identical to the experiments with different image-
sets, but a different category structure was used. We 
refer to these subsets of CIFAR 10 as “CIFAR 5, set 1 
and 2”. In a 2x2design (random seed 1 and 2 vs. 
“CIFAR 5, set 1 and 2”), we again trained four DNNs 
using ReLU as the activation function. 

 

Figure 1. RDM consistency across different seeds 
decreases with layer depth (blue). The effect is 

comparable to training on a completely different set of 
images with the same (orange) or a different category 

structure (green). 

 

Experiment II Following a first characterization of the 
problem in Experiment 1, we explored in how far adding 
noise to the activations and a biologically more 
plausible type of activation function (rate-limited tanh 
instead of ReLU) might affect RDM consistency. CIFAR 
10 was not split, but the entire set was used for training. 
In a 2x2x10 design (random seed 1 and 2 vs. ReLU and 
tanh  vs. 10 levels of noise) 40 DNNs were trained for 
250 epochs. Experiments with activation noise are 
based on multiplicative noise, which follows a Gaussian 

distribution centered on 1, with a variance 𝝈𝟐 scaling 
between 0 and 9. 
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Figure 2. Effects of activation-noise and –function 
on consistency and task performance a) The decrease 

in RDM consistency is negligible for low-level 
representations (layer 1, dark and light blue) and can 
be reduced to a minimum for intermediate and higher-
level representations (layer 4, red and orange; layer 7, 
black and grey) b) Only high levels of noise (variance 

𝜎2 > 0.67) affect testing performance for DNNs trained 
with ReLU. When using Dropout at test time, 

performance remains robust even at very high noise 
levels c) A similar pattern of results can be observed 

for a tanh activation function.  

 

 

 

Results and Discussion 

Experiment I. When varying only the initial set of 
weights, the RDM consistency between different DNN 
instances decreases substantially with layer depth 
(figure 1, blue) despite almost identical test 
performance (76 vs. 76.5% for seed 1 and 2, 
respectively). Surprisingly, this effect is qualitatively 
similar to when two DNNs with the same set of initial 
weights are trained on independent image sets 
originating from the same category structure (figure 1, 
orange). Even when training an entirely different 
category structure (figure 1, green) leads to only 
somewhat lower consistency. 

These results demonstrate the strong effect of 
different random seeds on a DNN’s intermediate and 
especially on higher-level representations, despite all 
other parameters being held constant. This finding has 
potential implications for comparing representations 
across DNNs or, as in computational neuroscience, to 
neural data, as observed differences could be solely 
due to weight initialization. 
 
Experiment II – RDM consistency. We next explored 
biologically motivated constraints for their ability to yield 
more robust internal representations. We considered 
multiplicative Gaussian noise in the unit activations, and 
a rate-limited activation function (tanh instead of ReLU). 
Like before, we computed the RDM consistency across 
two random weight initializations. Figures show 
consistency estimates for three exemplary layers (early, 
middle and high-level layers) together with network 
performances on the test data.  

Our results suggest that varying the noise level 
influences the consistency of both intermediate and 
higher-level representations. For ReLU-DNNs and 

CIFAR 10, noise with a variance 𝜎2 of 1.0 appears to 
yield maximal RDM consistency across intermediate 
(figure 2 a, layer 4, orange) and higher level (figure 2 a, 
layer 7, grey) representations; for tanh-DNNs noise with 

a variance 𝜎2 of 4.0 appears to yield maximal RDM 
consistency across intermediate (figure 2 a, layer 4, 
red) and higher level (figure 2 a, layer 7, black) 
representations. In contrast, lower-level RDM 
representations show overall high levels of consistency 
and are not strongly affected by varying the noise 
(figure 2 a, dark and light blue). Across noise levels, 
tanh results in more consistent representations, 
compared to ReLU (figure 2A inset). 
 
Experiment II – task performance. Varying the level 
of activation-noise and -function not only affects RDM 
consistency, but also task performance. Due to 
increasingly strong regularization, training performance 
decreases with increasing noise level independent of 
whether ReLU or tanh was used (figure 2 b and c, 
“training”, dark and light green). Test performance in 
ReLU-DNNs is relatively unaffected up to noise 



variance 𝝈𝟐 of 0.67. At higher levels, testing 
performance depends on whether dropout is applied at 
test time (figure 2 b, “Testing” (no dropout) vs. 
“Bayesian testing” (dropout), dark and light purple vs. 
black and grey). The same overall observations can be 
made for tanh-DNNs, where increasing the noise 

variance 𝝈𝟐 above 0.43 leads to decreased testing 
performance if dropout is not applied at test time (figure 
2 c, “Testing” (no dropout) vs. “Bayesian testing” 
(dropout), dark and light purple vs. black and grey). Yet, 
dropout leads to robust test performance even at high 
noise levels.  

In sum, these results suggest that the consistency of 
higher-level representations in DNNs across random 
weight initialization can be maximized by Gaussian 
activation noise and by using tanh as activation 
function. While Bayesian testing remains comparably 
stable, test performance without dropout may be 
considerably reduced when networks are optimized for 
consistency.  

Conclusions 

We use RSA, an analysis framework borrowed from 
neuroscience, to investigate the consistency of learned 
representations in DNNs. We find that random weight 
initialization most affected intermediate and higher-level 
representations. Surprisingly, the effect is qualitatively 
similar to training on different sets of images with the 
random seeds held constant. The addition of Gaussian 
activation noise during training, and a rate-limited 
activation function (tanh) resulted in increased, at times 
almost perfect consistency of intermediate and higher-
level representations.  

While these analyses and results are important for 
machine learning and computational neuroscience, 
they are derived from a relatively small dataset (CIFAR 
10). The number of training instances (50.000 across 
10 categories) is small compared to the amount of 
parameters of the DNN used here (~18 mio.). Thus, it 
remains to be established how representational 
consistency is affected when using larger datasets, 
such as Imagenet or ecoset (Mehrer, Kietzmann, & 
Kriegeskorte, 2017; Russakovsky et al., 2015). As an 
addition or even alternative to using dropout, it will be 
interesting to test for the effects of implicit 
regularization, as introduced via training with heavy 
data augmentation (Hernández-García & König, 2018). 
Finally, experiments with Bayesian testing, which was 
largely unaffected across noise levels, will provide 
important insights into network consistency under 
uncertainty. 
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