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Abstract: 

Predicting the actions of others is relevant in many social 
situations from extending a handshake to elaborate waltzes. To 
study the preparatory information in movements and how 
people are able to interpret these preparatory cues, we designed 
a partnered reaching task. In the competitive condition, one 
partner (the Blocker) had to beat the other (Attacker) to the 
target (see Vaziri-Pashkam et al., 2017), and in the cooperative 
condition, both participants were asked to tap the same target 
at the same time. In a psychophysical paradigm, different 
subjects viewed short clips of the Attacker’s movements and 
were asked to predict whether the Attacker was going to point 
to the left or right target. Subjects were able to predict the 
direction of movement with between 80% and 90% accuracy 
before finger lift off. A follow-up searchlight analysis revealed 
that all body parts contained informative predictive cues with 
the head showing predictive information earlier in the 
movement for both conditions, but especially for the 
cooperative condition. These results reveal that subjects can use 
preparatory cues in the movements of others to predict action 
goals before the start of the movement and that these cues are 
exaggerated in the cooperative context to communicate the goal 
of actions. 
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Introduction 

Walking down a busy street, remarkably, does not result in 
many people bumping into each other. When someone is 
walking directly toward you, you seamlessly predict the 
result of their action—a collision—and effortlessly adjust 
your path to pass by easily. Similar predictions of actions are 
made when the barista hands you your coffee. This prediction 
ability is essential to social interaction (Frith & Frith, 2006; 
Sebanz, Bekkering, & Knoblich, 2006), occurs 
spontaneously, without training (Vaziri-Pashkam, Cormiea, 
& Nakayama, 2017), and may arise from knowledge of 
biomechanical constraints of human action (Johansson, 
1973).  

We have the ability to predict the future course of an action 
sequence from the movements of others. Action prediction 
ability has been studied extensively in sports (Abernethy et 
al, 2001, Abernethy & Zawi, 2007, Aglioti, Cesari, Romani, 
& Urgesi, 2008, Knoblich & Flach, 2001, Muller, Abernathy 
& Farrow, 2006, Knoblich & Flach, 2001, Ranganathan & 
Carlton, 2007, Diaz, Fajen & Phillips, 2012). For instance, 
Aglioti et al (2008) demonstrated that elite basketball players 
we are more accurate at predicting whether a free-throw shot 
would go into the basket when only viewing part of the 
movement than novice basketball players. Predictive ability 
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has even been shown for simple reaching actions (Louis-
Dam, Orliaguet, and Coello, 1999; Martel, Bidet-Ildei, & 
Coello, 2011; Pesquita, Chapman, & Enns, 2016), and the 
removal of predictive information has been shown to increase 
reaction times (Vaziri-Pashkam et al. 2017).  

These studies demonstrate the existence of goal predictive 
information at the beginning of a goal-directed movement. 
What remains unknown is the spatio-temporal profile of the 
predictive cues. Is the predictive information focused on a 
single body part? Or is it distributed over the body? Do 
informative body parts vary across time? Does the social goal 
of the actors affect the bodily profile of goal predictive 
information? The current study aimed to investigate when 
preparatory information becomes available to human 
observers, where the information is located in the body, and 
how the location and timing of information is affected by 
social context using a combination of psychophysics and 
machine learning.   

Methods 

Psychophysics 

Twenty attackers were recorded in one of two conditions: 
cooperative or competitive, which differed only in the 
instructions. In the competitive condition, one partner (the 
Blocker) had to beat the other (Attacker) to the target (see 
Vaziri-Pashkam et al., 2017), while in the cooperative 
condition, both participants were asked to tap the target at the 
same time (Figure 1a). Attackers wore magnetic motion 
sensors that tracked the position of their finger and the 
session was recorded. To determine when enough 
information was available in the videos for humans to predict 
the goal of movement, the full videos were separated into 
individual clips containing single trials (Figure 1b). Then, in 
each video clip, the frame in which the Attacker lifted his/her 
finger off the table was determined based on the kinematic 
information from the finger.  The videos of the Attackers 
were shown to twenty new participants (10 for each 
condition), and they were asked to determine the direction of 
movement after viewing a short video clip. The clips were 
presented from ~500 ms (~30 frames) prior to the finger lift 
off up to specific cut-frames. The cut-frames varied between 
-133 ms (-8 frames) and +33 ms (+2 frames) relative to the 
Attacker start point.  The average accuracy of the participants 
was determined at each cut-point to construct a psychometric 
function across video clips for each of the 20 Attackers. The 
psychometric curve was fit with a logistic function to 
determine the time of 75% accuracy (T75).  

Machine Learning 
Using the Gunner-Farneback Optical Flow algorithm, the 
motion energy of each pixel in the video was calculated. A 
bagged SVM was trained on 50% of the optical flow data 
and tested on a left-out 50% frame-by-frame. This allowed 

for construction of a sigmoid function that could be 
compared to the behavioral psychometric results. The 
sigmoid curve was fit with a logistic function to determine 
the T75. Next, using a searchlight algorithm (Pereira & 
Botvinick, 2011), accuracy of the classifier was determined 
for different spatial positions in each frame of the video to 
determine the spatio-temporal profile of the informative 
features in the video.    

 
Figure 1: a) Set-up of the Attacker and Blocker. The 

attacker is told through the headphone which target (left or 
right) to point to and the blocker needs to beat her to the 

target (competitive) or arrive at the same time at the target 
(cooperative). b) Example video frame shown to 

participants in the psychometric experiment.  

Results 

Psychophysics 
The average subjects’ performance was greater for the 
cooperative condition than the competitive condition at some, 
but not all, time points (Figure 2). These data illustrate two 
critical points. The average cooperative curve is shifted to the 
left compared to the competitive curve, suggesting that the 
cooperative Attackers revealed more information prior to the 
movement start than did the competitive Attackers. The 
leftward shift of the cooperative curve is further illustrated by 
the T75 of the two curves. The average T75 was earlier in time 
for the cooperative (M = -47.07 ms) than the competitive 
condition (M = -23.45 ms, t(28) = 2.44, p < 0.01).  

 
Figure 2: Average psychometric curves from the behavioral 
data for the cooperative and competitive conditions. Time 

zero is when the finger lifted off the table. Dotted lines 
represent 95% confidence intervals from bootstrapping.  
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Machine Learning 
The SVM performance was greater for the cooperative 
condition than the competitive condition at some, but not 
all, time points (Figure 3). The average T75 for the SVM was 
more negative in the cooperative (M = -72.10 ms) than the 
competitive condition (M = -36.80 ms, t(198) = 87.68, p < 
0.001). The average T75 for the SVM was also more negative 
for both conditions than the behavioral data. However, the 
T75 of the SVM was strongly correlated with the 
behaviorally determined T75 for both the competitive (r(8) = 
0.68, p < 0.05) and cooperative (r(8) = 0.72, p < 0.05) 
conditions (Figure 4). In other words, if it was difficult to 
interpret the direction of movement of the Attacker for a 
human, it was also difficult for the SVM. 
 

 
 

Figure 3: Average sigmoidal curves from the SVM for the 
cooperative and competitive conditions. Time zero is when 
the finger lifted off the table. Dotted lines represent 95% 

confidence intervals from bootstrapping. 
 

The results of the searchlight analysis are shown in Figure 
5. These results demonstrate the spatio-temporal profile of 
predictive information and how it varies across conditions. In 
both conditions the head is informative early and the 
information then moves to the arms and the rest of the body. 
Also, the head appears to be more informative in the 
cooperative than the competitive condition in the early 
frames, while the shoulders seem to carry a greater amount of 
early information in the competitive condition.  

 

 
 

Figure 4: Correlation of the time of 75% accuracy (T75) of 
the SVM compared to human T75.  

 
Figure 5: Informative features from the searchlight analysis 

of the Optical Flow information through time. Time zero 
is when the finger lifted off the table.  

Discussion  

The current study aimed to investigate when preparatory 
information is sufficient to predict an action goal. Attackers 
were recorded playing a competitive or a cooperative 
reaching task against an opponent. The videos were cut and, 
using a psychophysical paradigm, the accuracies of observers 
in predicting the goal of action from cut-videos were 
measured. We found that subjects were able to predict the 
direction of movement well before the movement began in 
both conditions, although there was more information 
available earlier in the cooperative condition than the 
competitive condition. Further, a support vector machine 
(SVM) was trained to decode the direction of movement and 
was found to accurately predict the direction of movement 
significantly earlier than human viewers. Despite 
outperforming human perception, the accuracy of the SVM 
was correlated with the behavioral accuracy. 

Considering the SVM as an ideal observer, we borrowed a 
searchlight method from the field of neuroimaging 
(Kriegeskorte, Goebel, & Bandettini, 2006) to investigate 
which pixels in the videos of the movement were most 
informative in decoding the direction of movement. The 
searchlight analysis revealed early information in the head of 
the Attacker that becomes more distributed over the body as 
the movement progressed. The searchlight revealed that the 
distribution of information throughout the body differs in 
cooperation and competition. The presence of more 
information in the head and body parts explicitly involved in 
movement execution suggest that people may have some 
knowledge of preparatory cues and can leverage them to their 
benefit in cooperation.   
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