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Abstract 
   

Functional connectivity studies have identified at least 
two large-scale neural systems that constitute cognitive 
control networks (CCNs) – the frontoparietal (FPN) and 
cingulo-opercular (CON) networks. CCNs are thought to 
support goal-directed cognition and behavior. We 
previously showed that FPN shifts global connectivity by 
task goal, consistent with a “flexible hub” mechanism for 
cognitive control. Our aim here is to develop a functional 
cartography of CCNs in terms of network mechanisms. 
We quantified mechanisms using a high-demand control 
paradigm involving switching among 64 systematically-
related tasks. We hypothesized that cognitive control is 
enacted differently by the FPN and CON, and found 
dissociations in graph metric results across these 
networks. Consistent with a flexible hub mechanism, 
FPN connections were globally diverse, while tending to 
maintain their within-network connectivity across tasks. 
Consistent with a “stable hub” mechanism, CON 
connections were globally uniform (consistently 
connecting to the same networks), while tending to not 
maintain within-network connections. This pattern of 
results suggests FPN acts as a dynamic, global 
coordinator of goal-relevant information, while CON 
transiently disbands to dynamically lend resources to 
other goal-relevant networks. This cartography of 
network dynamics reveals a dissociation between two 
prominent cognitive control networks, suggesting 
parallel distinct mechanisms underlying goal-directed 
cognition.  
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Cognitive Control 
 

Control theory (a core framework in engineering) 
suggests that flexibly reconfigurable systems are well-
suited for control processing (Cao et al., 2012). In 
neural systems, we propose this function is borne out 
as cognitive control, or processes supporting goal-
directed cognition (Egner, 2017). An individual’s goals, 
the environment, and the state of the system are all 
subject to change over time. To accord with these 
fluctuations, control processing must be dynamic 
(Miller & Cohen, 2001). Here we asked how control is 
instantiated in terms of the spatiotemporal dynamics 
driving brain network reconfiguration. We aimed to 
develop functional cartographies representing pivotal 

network properties in two dimensions. Cartographies 
act as "maps" for network mechanisms or properties of 
interest (Guimerà et al., 2005; Mattar et al., 2015). 
Understanding the neural basis of cognitive control has 
broad implications, including potential applications in 
mental health, education, better goal-pursuit strategies 
for everyday life, and improved artificial intelligence for 
in silico modeling of neural networks. 

Cognitive control networks (CCNs) are posited to 
include at least two large-scale systems – the 
frontoparietal (FPN) and cingulo-opercular (CON) 
networks (Dosenbach et al., 2008). The FPN is thought 
to contain flexible hub regions – or network nodes with 
extensive connectivity (hubs) that are capable of rapid 
reconfiguration with changing task demands (flexible) 
(Cole et al., 2013b). Outstanding questions remain 
regarding the CON: does it also contain hub-like 
regions? Are they likewise flexible?  
  

Intrinsic and Task-Evoked Systems 
  

Cognitive control is thought to be exhibited based on 
current task-demands and the current capability of the 
system (Miller & Cohen, 2001). Two important findings 
informed our thinking regarding cognitive control for the 
current study. (1) Task-evoked functional connectivity 
(tFC) across many states closely resembles intrinsic, 
resting-state connectivity (rsFC) (Cole et al., 2014). 
Moreover, slight changes from rsFC to tFC carry 
functional properties supporting the task at hand 
(Hearne et al., 2017). (2) The amount of control 
deployed reduces with expertise; the more practiced 
one is at a given task, the less they utilize control 
(Schnieder & Chein, 2002).  

To investigate ongoing control processing, we 
administered a rapid instructed task learning (RITL) 
cognitive paradigm – the concrete permuted rule 
operations (C-PRO) paradigm (Cole et al., 2013a; Ito 
et al., 2017) – during functional magnetic resonance 
imaging (fMRI). This paradigm combined sensory, 
motor, and logic rules such that each task state 
presented a novel permutation to the participants. 
Cognitive control was required across all trials per the 



presentation of novel combinations of complex rule 
sets. Resting-state fMRI scans were also obtained, 
allowing us to synthesize the benefits of a RITL 
paradigm with the observation that task-evoked states 
emerge out of an intrinsic state (Fig. 1), and assess 
functional reconfigurations between these states (Fig. 
2 & 3). The cohort included N=100 healthy adults (44 
men and 56 women, mean age of 22 years, SD=4.05 
years); all of which provided informed consent. To 
improve replicability, we used a split-sample validation 
approach with an n=50 ‘discovery’ dataset and an n=50 
‘replication’ dataset (discovery data shown herein). 
  

 
Figure 1: Functional connectivity (FC) estimation. (A) 
Resting-state functional connectivity (rsFC) across 360x360 
regions (parcellation as in Glasser et al., 2016), ordered per 
the CA partition (color-coded along each matrix edge; see D). 
Values are discovery-set grand averages (n=50, 15-minute 
duration). rsFC was estimated with Pearson’s correlation 
coefficient, Fisher z-transformed for stabilization of variance. 
(B) Task-evoked functional connectivity (tFC) across 
360x360 brain regions, ordered and estimated as in A (grand 
averages: n=50 and 64 C-PRO task states). (C) Difference 
matrix: tFC-rsFC. Two-dimensional correlation coefficient 
between tFC (B) and rsFC (A), R=0.88, p<0.00001 (r2~78% 
shared variance explained). (D) Cortical schematic of the 
Cole-Anticevic (CA) intrinsic network partition (Spronk et al., 
2018). LH = left hemisphere; RH = right hemisphere. 
  

Network Dynamics Metrics 
  

To quantify mechanisms underlying changes in FC 
across C-PRO task states, we employed graph 
theoretical metrics previously developed to 
characterize network dynamics. In some cases, they 
have already been linked with the flexible 
reconfiguration property of control processing. This 
network mechanism approach is thought to provide 
explanatory power to observed links between neural 
data and cognitive demands (as well as behavioral 

output) (Mill et al., 2017). Importantly, graph metrics 
quantifying network dynamics can vary on 
mathematical assumptions, data treatment, and null-
model comparison, but are often interpreted similarly. 
We probed these metrics by comparing results with 
algorithmic properties in mind, to ultimately build a 
mechanistically detailed cartography of CCNs.  
  
Global Variability Coefficient (GVC) 
  

Global variability coefficient (GVC) quantifies shifting 
patterns of tFC across states. GVC is calculated based 
on the standard deviation of each connection across 
task states, which are then averaged across all 
connections for each region. Networks with high GVC 
contain flexible hub regions capable of exerting 
adaptive task control (Cole et al., 2013). Confirming 
previous findings, we found the FPN had the highest 
GVC, t(49)=11.83, p<<0.01. (Fig. 2A & 2B). GVC 
treats data as derived from a continuous distribution.  
  
Between-Network Variability Coefficient (BVC) 
  

Between-network variability coefficient (BVC) is a 
version of GVC wherein within-network connections 
are withheld from computations. This measure 
accounts for the potential confound that within-network 
tFC estimates might confer upon GVC results (if one is 
interested primarily in global, out-of-network 
dynamics). We found that BVC was tightly correlated 
with GVC results (rs(10)=0.96, p<<0.01), suggesting 
that within-network estimates do not dominate the 
outcome of the GVC analysis. FPN regions likewise 
demonstrated the highest BVC; t(49)=12.36, p<<0.01 
(Fig. 2C & 2D). This pattern of results supports the 
notion that the FPN contains flexible regions adaptively 
configured for multi-task control.  
  
Network Flexibility (NF)  
  

Network flexibility (NF) measures spatiotemporal 
dynamics related to task-evoked time-series by 
quantifying temporal variability in network organization 
(Bassett et al., 2011; Bassett et al., 2013). This 
organization was identified by an optimized quality 
function termed multilayer modularity (Mucha et al., 
2010). Required parameters (γ,ω) could be used to 
tune the degree to which connectivity dynamics were 
treated as discrete versus continuous in space (γ) 
and/or time (ω). This tuning ultimately determined 
whether NF was correlated or uncorrelated with GVC. 
We varied γ between 0 and 5 in steps of 0.5; ω, 
between 0 and 2 in steps of 0.2. NF was strongly 
correlated with GVC when γ=3 and ω=0.2, which we 
termed NF-optimal (rs(10)=0.8, p=0.0032). NF was 
uncorrelated with GVC in the field-standard portion of 
the parameter space, or when γ=1 and ω=1 



(rs(10)=0.21, p=0.51) (Chen et al. 2015), which we 
termed NF-standard. We propose that NF-optimal 
captured a continuous distribution of FC values via 
higher spatial resolution (γ), which was offset by a 
moderate temporal resolution (ω) that kept each region 
from developing its own network. In NF-optimal, the 
FPN demonstrated the second highest mean value 
(t(49)=4.02, p=0.0002) (Fig. 2E & 2F), suggesting that 
in this sector of the parameter-space, the FPN flexibly 
reorganized across task states more than other 
networks. NF-standard, however, resulted in an 
undersized number of networks due to the lower spatial 
resolution (γ). We reasoned that NF-standard treated 
the current dataset as unduly discretized.   
  
Network Partition Deviation (NPD) 
  

To reconcile the divergent results and principles of 
GVC and NF, we created a novel metric termed 
network partition deviation (NPD). NPD enumerates 
network reassignments from a pre-defined partition 
(e.g., the Cole-Anticevic intrinsic partition), across task 
states. NPD is the percent of task states (e.g., the 
relative frequency across tasks) in which a given region 
deviates from a pre-defined partition (Fig. 2G & 2H). Of  
the proposed CCNs, the CON displayed the highest  
 
 
 
 
 
 
 
 
 
 
 
 

mean NPD (t(10)=4.7, p=0.0008). 
  
Cartography of Cognitive Control Systems 
  

We found that FPN regions expressed high GVC and 
NF (in an optimized sector of the NF parameter space), 
yet relatively low NPD. CON regions, however, 
displayed lower GVC and NF, yet higher NPD. Careful 
examination of connectivity established by CON and 
FPN regions clarified this pattern of results. FPN 
connectivity was globally diverse, whereas CON 
connectivity was globally uniform (Fig. 3A). High GVC 
requires hub regions – network nodes with extensive 
connectivity throughout the brain. Thus, the GVC 
results suggest FPN regions were acting as flexible 
hubs, given their diversity, and CON regions (which 
have been shown to be hubs as well; see Ito et al., 
2017; Power et al., 2013) were acting as stable 
hubs, given their uniformity (Fig. 3A). The NPD 
dissociation between CCNs were mostly attributable 
to within-network connections being maintained in 
the FPN but not CON across tasks (Fig. 3B). This 
cartography of network dynamics reveals a 
dissociation between two prominent CCNs, suggesting 
parallel distinct mechanisms underlying goal-directed 
cognition. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2: Cognitive control network metrics. (A) Network-mean GVC; all means (panels A-H) are across n=50 and C-PRO 
task states. Networks partitioned as in Fig. 1D. Error bars: standard error of the mean. Asterisks: statistically significant 
independent-samples t-tests (corrected for false discovery rate, α=0.05). (B) Regional mean GVC (same as panel A, but at the 
region level). (C) Network-mean BVC. (D) Mean regional BVC. (E) Network-mean NF-Optimal. (F) Regional mean NF-optimal. 
(G) Network-mean NPD. (H) Mean regional NPD. Formula terms: n=regions; T=tasks; i=region 1; l=task 1; N=number of regions; 
FC=adjacency matrix; n’=out-of-network regions; i’=region 1, out-of-network; N’=number of out-of-network regions; FCi’l=edge 
weight, per out-of-network region, per task; FCl’=FC matrix, out-of-network regions only, per task; j=last region; r=last task; 
γ=spatial  resolution; ω=temporal resolution; P=optimization null-model; Sij,l+1,r=S, all other tasks; c=network regions; C=number 
of network regions; rS=pre-defined partition; FCcj=edge weight, per network-region, per task; Q=multi-slice modularity; 
!=Kronecker’s delta; S=network assignments;  " = $

%& { FCijl-γlPijl δlr + δijωjlr}δ(Sil, Sjr)9:;< . 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Cartographies of functional brain systems. (A) Between-network variability (network means, z-scored) across the task-state 
dimension (BVC-task; y-axis; as in Fig. 2C) and across the regional dimension (BVC-region; x-axis; as in panel A, except variability 
measured across regions). CCNs (FPN=yellow, CON=plum) are highlighted with dark black outlines. (B) Within-partition integration and 
deviation (network means, z-scored). Integration (y-axis) is the Jaccard similarity coefficient between task-state reassignments (via NPD) 
and resting-state assignments (i.e., cross-task partitions versus resting-state partition). Deviation (x-axis) was found as in Fig. 2G.  
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