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Abstract 
Perceptual choices depend not only on the current 
sensory input, but also on the behavioral context. An 
important contextual factor is the history of one’s own 
choices. Choice history often strongly biases perceptual 
decisions, and leaves traces in the activity of brain 
regions involved in decision processing. Yet, it remains 
unknown how such history signals shape the dynamics 
of later decision formation. Models of perceptual choice 
construe decision formation as the accumulation of 
sensory evidence towards decision bounds. In this 
framework, it is commonly assumed that choice history 
signals shift the starting point of accumulation towards 
the bound reflecting the previous choice. We here 
present results that challenge this idea. We fit a bounded 
accumulation (‘drift diffusion’) decision model to 
behavioral data from multiple perceptual choice tasks 
and sensory modalities, and estimated bias terms that 
dependent on observers’ previous choices. Individual 
history biases in behavior were consistently explained 
by a history-dependent change in the evidence 
accumulation, rather than in its starting point. Choice 
history signals thus seem to affect the interpretation of 
current sensory input, akin to shifting endogenous 
attention towards (or away from) the previously selected 
interpretation. 
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Introduction 
Decisions are not isolated events but are embedded 

in a sequence of choices. Preceding choices can exert 
a large influence even on low-level perceptual 
judgments (Fernberger, 1920). Computational theory 
(Gao, Wong-Lin, Holmes, Simen, & Cohen, 2009; 
Glaze, Kable, & Gold, 2015) and psychophysical data 
(Braun, Urai, & Donner, 2018; Kim, Kabir, & Gold, 2017) 
indicate that choice history biases result from the 
accumulation of internal decision variables across trials, 
with a timescale governed by the decision-makers’ 

internal model of the correlation structure of their 
environment.  

Bias in the DDM 
Current models of perceptual decision-making posit 

the accumulation of noise-corrupted sensory evidence 
over time, resulting in an internal decision variable that 
grows with time (Bogacz, Brown, Moehlis, Holmes, & 
Cohen, 2006; Ratcliff & McKoon, 2008). When this 
decision variable reaches one of two decision bounds, 
a choice is made and the corresponding motor 
response is initiated. In this framework, a bias can be 
brought about in two ways: (i) by shifting the starting 
point of accumulation towards one of the two bounds, 
or (ii) by selectively changing the rate at which evidence 
for one versus the other choice alternative is 
accumulated (Figure 1). The former can be 
conceptualized as adding an offset to that ‘perceptual 
interpretation signal’ during the generation of the 
response, whereas the latter as altering the perceptual 
interpretation of the current sensory input.  

 

 
 

Figure 1. Two biasing mechanisms within the drift diffusion 
model. (a) Choice history-dependent shift in starting point. 
Gray line: example trajectory of decision variable from single 
trial. Black lines: mean drift and resulting RT distributions 
under unbiased conditions. Green lines: mean drift and RT 
distributions under biased starting point. (b) As (a), but for 
choice history-dependent shift in drift bias. Blue lines: mean 
drift and RT distributions under biased drift. Both mechanisms 
differentially affect the shape of RT distributions. 
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A shift in starting point would be most prevalent early 
on in the decision process: it would affect the leading 
edge of the RT distribution, shifting its mode. It predicts 
that the majority of history-dependent choice biases 
occur on trials with fast reaction times. A shift in the drift 
bias instead grows with time. Therefore, it would affect 
the trailing edge of the distribution with little effect on 
the mode. In contrast to starting point bias, drift bias 
alters choice fractions across the whole range of 
reaction times, well into the tail of the RT distribution.  

While many current models of choice history bias 
posit that a history-dependent starting point can explain 
choice patterns (Gao et al., 2009; Yu & Cohen, 2008), 
is unknown which effect best captured psychophysical 
data. We addressed this issue by fitting a computational 
decision model to human behavioral data from five 
studies of human perceptual decision-making, covering 
a variety of task protocols and sensory modalities.  

 

History-dependent shifts in drift bias 
explain individual choice behavior 

We used five existing datasets, four of which were 
previously published (de Gee et al., 2017; de Gee, 
Knapen, & Donner, 2014; Murphy, Vandekerckhove, & 
Nieuwenhuis, 2014; Urai, Braun, & Donner, 2017). 
These covered a range of task protocols and sensory 
modalities commonly used in the study perceptual 
decision-making: two alternative forced-choice, two 
interval forced-choice, as well as yes-no (simple forced 
choice) tasks; RT as well as so-called fixed duration 
tasks; visual motion direction and coherence 
discrimination; and visual contrast and auditory 
detection. As found in previous work, observers 
exhibited a wide range of idiosyncratic choice history 
biases across all experiments. 

 

 

Figure 2. Model comparison and simulations. (a) We 
used the Deviance Information Criterion (DIC) as a measure 
of model fit, and took the model without history dependence 
as a baseline for each data set. Lower DIC values indicate a 
model that is better able to explain the data, after taking into 
account the model complexity; a DIC of 10 is generally taken 

as a threshold for considering one model a sufficiently better 
fit. (b) Conditional bias functions. For each of four simulated 
models, as well as the observed data, we divided all trials into 
quantiles of the RT distribution. For each quantile, the fraction 
of choices biased towards each individual’s history bias 
(repetition or alternation) indicates the degree to which 
behavior is biased, within that range of RTs (White & 
Poldrack, 2014). (c) Choice bias on slow response trials (last 
three quantiles of the RT distribution) can be captured only by 
models that include history-dependent drift bias. Black error 
bars indicate mean ± 95% confidence interval across all data 
sets, bars indicate the predicted fraction of choices in late RT 
quantiles. 

 
We fit the drift diffusion model (Wiecki, Sofer, & 

Frank, 2013) to behavioral data (choices and reaction 
times, RT) from a total of 162 human participants across 
these 5 tasks. We allowed starting point, drift bias, or 
both to vary as a function of the observer’s choice on 
the previous trial. The model with both history-
dependent starting point and drift bias provided the best 
fit to the data (Figure 2a). We further examined the 
ability of each model to explain the diagnostic features 
in the data that distinguished starting point from drift 
bias. In particular, the biased choices on slow RTs could 
only be captured by models that included a history-
dependent shift in drift (Figure 2b,c).  
 

 
 

Figure 3. Individual choice history biases are explained 
by history-dependent changes in drift bias, not starting 
point. (a) Correlations between individual choice repetition 
probabilities, P(repeat), and history shift in starting point (left 
column, green) and drift (right column, blue). Parameter 
estimates were obtained from a model in which both bias 
terms were allowed to vary with previous choice. Horizontal 
and vertical lines, unbiased references. Thick black crosses, 
group mean ± s.e.m. in both directions. Black lines best fit of 
a linear regression (only plotted for significant correlations). 
(b) Summary of the correlations between individual choice 
repetition probability and the history shifts in starting point 
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(green; left) and drift bias (blue; right). Error bars indicate the 
95% confidence interval of the correlation coefficient. Dr 
quantifies the extent to which the two DDM parameters are 
differentially able to predict individual choice repetition 
probability, p-values from Steiger’s test. The black diamond 
indicates the mean correlation coefficient across data sets. 
The Bayes factor (BF10) quantifies the relative evidence for 
the alternative over the null hypothesis. 

 
We then used the parameter estimates obtained 

from the full model (with both history-dependent starting 
point and drift bias) to investigate how the choice 
history-dependent variations in starting point and drift 
bias related to each individual’s tendency to repeat their 
previous choices (Figure 3a). We call each bias 
parameter’s dependence on the previous choice its 
‘history shift’. Across all five data sets, the history shift 
in drift bias, but not the history shift in starting point, was 
robustly correlated to the individual probability of choice 
repetition (Figure 3b).  

Conclusion 
We found that across five data sets, history biases 

evident in observers’ overt choice behavior were 
explained by a history-dependent change in the 
accumulation bias rather than the starting point. This 
result calls for a revision of current models of history 
biases (Yu & Cohen, 2008) and indicates that the 
interaction between choice history signals and decision 
formation is more complex than previously thought. 
Choices may act like an endogenous cue for selective 
attention that biases evidence accumulation towards (or 
away from) the previous chosen perceptual 
interpretation of the sensory input. 
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