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Abstract

What is the role of the Fusiform Face Area (FFA)? Is it specific
to face processing, or is it a visual expertise area? The exper-
tise hypothesis is appealing due to a number of studies showing
that the FFA is activated by pictures of objects within the sub-
ject’s domain of expertise (e.g., cars for car experts, birds for
birders, etc.), and that activation of the FFA increases as new
expertise is acquired in the lab. However, it is incumbent upon
the proponents of the expertise hypothesis to explain how it is
that an area that is initially specialized for faces becomes re-
cruited for new classes of stimuli. We dub this the visual exper-
tise mystery. This paper summarizes a decade of research on
this topic. We show that a neurocomputational model trained
to perform subordinate-level discrimination within a visually
homogeneous class develops transformations that magnify dif-
ferences between similar objects, in marked contrast to net-
works trained to simply categorize the objects. This magnifi-
cation generalizes to novel classes, leading to faster learning
of new discriminations. We suggest this is why the FFA is
recruited for new expertise. The model predicts that individ-
ual FFA neurons will have highly variable responses to stim-
uli within expertise domains. Keywords: Neurocomputational
models; Fusiform Face Area; Expertise hypothesis

Introduction
There has been a great deal of progress in understanding how
complex objects, in particular, human faces, are processed by
the cortex. At the same time, there is a great deal of con-
troversy about the role of various cortical areas, especially
the Fusiform Face Area (FFA) (Kanwisher et al., 1997; Kan-
wisher, 2000; Tarr and Gauthier, 2000). Is the FFA a mod-
ule, specific to the domain of faces, or is it instead specific to
the process of fine level discrimination? Several fMRI stud-
ies have shown high activation in the FFA only to face stim-
uli and not other objects (Kanwisher et al., 1997; Kanwisher,
2000). Gauthier et al. (1997) have challenged the notion of
the face specificity of the FFA by pointing out that the earlier
studies failed to equate the level of experience subjects had
with non-face objets with the level of experience they had
with faces.

Gauthier et al. (2000) showed that the FFA was activated
when car and bird experts were shown pictures of the animals
in their area of expertise. Furthermore, they illustrated that, if
properly trained, individuals can develop expertise on novel,
non-face objects (e.g., Greebles), and subsequently show in-
creased FFA activation to them (Gauthier et al., 1999). Cru-
cially, the same 2 or 3 voxels that are most active for faces
also show the largest increase in activity over the course of ex-
pertise training on non-face stimuli, suggesting that the FFA
is recruited as subjects learn to visually discriminate novel
homogeneous stimuli, and is automatically engaged when
the subject is an expert (Tarr and Gauthier, 2000). Hence
the theory is that the FFA is a fine level discrimination area.
However, this idea still does not answer the question of what

mechanism would explain how an area that presumably starts
life as a face processing region is recruited for these other
types of stimuli. This is a job for modeling.

The Model
In short, we trained two networks (Figure 1), one to be
a“basic level” categorizer, that simply mapped images into
their categories, and one to be an “expert level” discriminator,
that mapped images into their subcategory (Bob, Carol, Ted,
or Alice, book1, book2, etc.) (Tong et al., 2008). The hidden
layers of the two networks then represent the features learned
by the Lateral Occipital Complex (LOC), and the FFA. We
then trained the two networks on Greebles, and put them into
a race to see who won.

Our working hypothesis was that cortical areas compete to
solve tasks, and that the region of cortex that learned a task
faster would be used for that task. In Figure 2, we plot the
amount of epochs required to learn Greebles as a function of
the number of epochs of training on the primary task. As can
be seen from the Figure, when the initial domain of expertise
was faces, the expert network always learned the Greeble task
faster than the basic network (representing the task performed
by LOC).

One advantage of modeling is that one can perform experi-
ments that are impossible or unethical to perform on humans.
One aspect of this in Figure ?? is that at every point in the
figure, the network is “xeroxed”, and trained on Greebles, re-
sulting in the points shown in the graph. That is, we can do
this as a within-subjects experiment, and show that the longer
we train on the primary task, the faster the network learns the
Greebles.

Another aspect of the modeling advantage is the non-Face
expert curves in Figure 2. These curves are instances of train-
ing the network initially to be a cup, can, or book expert. In
all three cases, the expert network learned the Greeble task
faster than the basic network. This experiment is impossible
to perform on humans, but the model results lead us to sug-
gest, somewhat facetiously, that if our parents were cans, the
Fusiform Can Area would be recruited to perform the Greeble
task.

Our model thus suggests that there is nothing special about
faces per se any primary expertise domain resulted in faster
Greeble training. It is our contention that it is the task that is
the important variable here, not the domain of expertise.

The next question is, why does this happen? Surely, cups
and Greebles don’t share features, do they? It turns out that
in this case, they do. In Figure 3 we plot the internal rep-
resentation of the penultimate hidden layer by plotting the
2nd and 3rd components of the PCA of the hidden unit acti-



Figure 1: The Model. The first layer is convolutional, using Gabor filters, followed by PCA, followed by a trained hidden layer.
The two branches reflect the putative tasks of the LOC and FFA.

vations (the first just expresses the growth in weights). The
expert network (top row), displays the “spreading transform”
that separates not only categories, but individuals in those cat-
egories, including the basic level categories it was trained on.
The basic level network “clumps” all of the inputs into one or
two regions of the space. The plot also shows the Greebles
(red dots) projected into the space before training. As can be
seen, the Greebles are already spread out in face space prior
to training. The spreading transform generalizes to novel in-
puts. The Basic network, on the other hand, clumps all of the
Greebles together, as it does the other categories.

Another way to think about this is that a basic level network
has to take a set of similar-looking things, e.g., books, and
minimize the variance between them, while maximizing the
variance between the categories, similarly to Fisher’s Linear
Discriminant. On the other hand, the Expert networks must
take a set of similar-looking things, in this case faces, and
maximize the variance between them. This is what we refer
to as the spreading transform. This allows the final layer to
separate out individuals.

An interesting observation here is in Figure 2. The expert
networks have actually learned their primary task (data not
shown) early in training, in less than 100 epochs. At that
point, they are already performing near-optimally on the ex-
pert task. The networks are therefore overtraining on the pri-
mary task. Yet, this overtraining leads to faster training on
the Greeble task. This is the opposite of most experience in
machine learning, where transfer and generalization is made
more difficult from overlearning on the original task. As can
be seen in Figure 3, the network at 1280 epochs has almost
already solved the Greeble task, as they are already spread
out in representational space.

A visualization of the receptive fields of two hidden units

in the face network before and after Greeble training is shown
in Figure 4. As can be seen in the Figure, the representations
have hardly changed after training, supporting the interpreta-
tion of the Greeble representations in Figure 2, that the fea-
tures learned by the network have almost already solved the
Greeble task by spreading them out in representational space.

Figure 2: Amount of training time required to learn the Gree-
ble task as a function of training time on the first domain of
expertise.

We have replicated this experiment many times, using a
basic-level task that was just as difficult as the expert task,
and using identical inputs and number of outputs for the two
networks, cutting the space in different ways to reflect basic
and expert categorization (identify the letters (basic) or iden-
tify the fonts (expert)). We have also shown that this network
can explain individual differences in expertise, and can ac-
count for the result that when experience with non-face cate-
gories is high, face performance correlates highly with object



performance (Wang et al., 2016).

Conclusion
This work shows that a neurocomputational model can be
used to explain what otherwise might be mysterious: Why
would the face area get recruited for new tasks? The answer
is that the task requires a transform of the data, the spread-
ing transform, that generalizes to new categories. Again,
the network representing the task carried out by the FFA
must learn features that discriminate between similar-looking
things (faces), and that representation is useful for separating
elements from other categories as well.

The other broad conclusion we take from this work is that
there is nothing special about faces, despite the many papers
to the contrary. What is special is what we do with them
- individuate them - and that task requires learning a repre-
sentation that spreads the items out in representational space.
This occurs no matter if the domain is cups, cans, books, or
even letters vs. fonts.
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Figure 3: Plot of the representational space learned in the hidden layer of the Face expert network (top) and the Basic network
(bottom). This is the 2nd and 3rd principal components of the hidden layer representations over learning.

Figure 4: A visualization of two randomly-chosen hidden unit receptive fields in the face network before and after Greeble
training.
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