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Abstract

Computational modelling of behavioural data is increas-
ingly used for psychiatric applications. To this end, it is of
interest to devise approaches for clustering behavioural
phenotypes, where those phenotypes are reinforcement
learning models fit to individual subjects. The present
study highlights that clustering in the space of individ-
ual parameter estimates may not reveal the presence of
decision-making phenotype groups. We also introduce a
similarity measure that improves cluster detection using
synthetic data generated on a task that measures goal-
directed and habitual control. Our results motivate fur-
ther investigation regarding unsupervised cluster detec-
tion in computational cognitive modelling of human be-
havioural data.
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Introduction

The majority of approaches to computational modelling of re-
inforcement learning in psychiatric populations have focused
on parameter estimation and model selection. There is rela-
tively less work done on detecting phenotype clusters, which
is the primary concern of this paper. To approach this prob-
lem, we must identify reasonable measures of similarity upon
which to base clustering procedures.

A simple choice may be distances between reinforcement
learning parameters estimated from behavioural data. Al-
though group differences are generally reported in this param-
eter space, there are drawbacks. There may be many equally
likely parameterizations for models generating a given set of
behavioural data. Distant parameterizations may also yield
similar behavioural data, which would cast doubt upon the va-
lidity of a parameter space similarity measure.

We propose a similarity measure that accounts for the like-
lihood with which subjects’ individually optimized parameters
can explain each other’'s data. In terms of ability to inform
a successful clustering procedure, our method is compared
to a similarity metric based on distances in parameter space.
Our paper shows that it may be possible to detect clusters of
decision-making phenotypes in a set of behavioural data in
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Figure 1: Parameter distributions in three synthetic groups.
Symbols: learning rate (o), and inverse softmax temperature
(B), model-based control weight (w).

cases where groups do not cluster in the space of parameter
estimates.

Methods

We simulated 200 trials of synthetic data generated by 3
groups of 60 agents on a reinforcement learning task previ-
ously described by (Kool, Cushman, & Gershman, 2016). This
task is primarily used to measure differences in goal-directed
and habitual control. Our task differed from that of (Kool et
al., 2016) insofar as the random walks governing reward were
anticorrelated (p = —1), and reward magnitudes were contin-
uous values between 0 and 1. Agents were defined as unique
parameterizations of a model consisting of softmax action se-
lection (with inverse temperature ), instrumental Rescorla-
Wagner learning rule (with learning rate o), and model-based
controller implemented with the Bellman equation (Bellman,
1957). Like previous work, we represent the balance of MB
and model-free (MF) control as a weighted sum with ® being
the proportion of MB control implemented. The three groups’
parameterizations are shown in Figure 1.

Using the same model architecture above, we computed
subject-wise maximum likelihood estimates (MLE) of param-
eters using the fitr package for Python (Nunes, Rudiuk, &



Trappenberg, 2016). The parameter distance q)f;?"”’” between
subjects i and j was computed as the cosine distance be-
tween 0; and 0.

We then computed a “likelihood distance”. For subject i, we
began by quantifying the subject-wise difference in likelihood
of data generated by subject j, D;, under the parameters in-
ferred for subject i:

2
X; = lng(Dj|ei) - Ing(Di|ei)} V] € {1’ .. -nsubjects}
(1)
The cosine distance between x; and x; yields an ngpjec X
Rsub ject Matrix @~ henceforth called the likelihood distance
matrix.

We subjected the parameter distance matrix ®™*" and
likelihood distance matrix ®* to the affinity propagation al-
gorithm (Frey & Dueck, 2007), which we selected in order to
determine whether the correct number of clusters in the data
could be identified. The primary measure of clustering perfor-
mance was adjusted mutual information (Vinh, Epps, & Bailey,
2009).

To qualify the difference in clustering performance between
parameter and likelihood distances, we plotted for each pair
of subjects a point (95", ¢/;) coloured according to whether
they belong to the same true underlying group. If the likelihood
distance performs superiorly in this case, greater separation
of in- and out-groups should be observed along that axis.

Results

Figure 2 shows the distance matrices @ and ®* respectively,
and clustering performance is reported in Table 1. Affinity
propagation with likelihood distance out-performed the same
algorithm using parameter-space similarity (adjusted mutual
information of 0.37 and 0.01, respectively). Clustering upon
our similarity measure also resulted in identification of the cor-
rect number of clusters in this case (compared to an estimate
of 15 clusters based on parameter distance).

Table 1: Clustering performance using parameter distance
PParam gnd likelihood distance P in the affinity propagation
algorithm. Abbreviations: adjusted mutual information [AdJ

Metric  7cjusers HoOmogeneity Completeness  I4%/
PParam 15 0.11 0.05 0.01
L 3 0.37 0.37 0.36

Figure 3 shows a comparison in parameter and likelihood
distance metrics within and between groups. In-group and
out-group distances were greatest along the the likelihood dis-
tance, rather than parameter distance.

Discussion
We have shown that unsupervised cluster detection of
decision-making phenotypes is possible using behavioural
data, but that performance of such clustering methods may
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Figure 2: Distance matrices. ®° shows parameter distances,
and ®* shows likelihood distances. Shorter distances are
represented by darker blue colour. Subjects are oriented
along the rows and columns in 3 groups (according to the
data’s generative process), as evinced by the block pattern
emergent in the distance matrices.

depend on the similarity measure employed. Our results high-
light one important consideration in computational cognitive
modelling of human behavioural data. Specifically, that ab-
sence of group clustering in parameter space may not re-
flect the absence of decision-making phenotype clusters in
the data. In our case, the inter-subject distances in parame-
ter space were virtually uninformative for cluster identification.
However, when the mapping of parameters on to behavioural
data was considered, we were able to recover the underlying
group structure.

The present study was not designed to show superiority of
the likelihood distance measure across all tasks and reinforce-
ment learning models. Rather, we sought to demonstrate the
details and feasibility of this approach in a single case. Future
work will evaluate the sensitivity of likelihood distance based
clustering to variations in task, reinforcement learning model,
and group composition. Our work suggests that unsupervised
approaches for analysis in computational psychiatry may be
of further value.
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Figure 3: Comparison of group separation using likelihood dis-
tance vs. parameter distance. Red points denote subject pairs
that are not in the same underlying group. Blue points denote
pairs of subjects that are in the same ground truth cluster.
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