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Abstract
Specific deep feed-forward artificial neural networks
(ANNs) constitute our current best understanding of the
primate ventral visual stream and the core object recogni-
tion behavior it supports. Here we turn things around and
ask: can we use these ANN models to synthesize images
that control neural activity? We here test this control in
cortical area V4 in two control goal settings. i) Single
Neuron State Control: ”stretch” the maximal firing rate
of any single neural site beyond its naturally occurring
maximal rate. ii) Population State Control: independently
and simultaneously control all neural sites in a popula-
tion. Specifically, we aimed to push the recorded popu-
lation into a ”one hot” state in which one neural site is
active and all others are clamped at baseline. We report
that, using ANN-driven image synthesis, we can drive the
firing rates of most V4 neural sites beyond naturally oc-
curring levels. And we report that V4 neural sites with
overlapping receptive fields can be partly – but not yet
perfectly – independently controlled. These results are
the strongest test thus far of deep ANN models of the
ventral stream, and they show how these models could
be used for setting desired brain states.
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Introduction
It has been claimed that particular deep feed-forward artificial
neural networks (ANNs) constitute a good – but not yet per-
fect – understanding of the primate ventral visual stream and
the core object recognition behavior it supports. This claim
is based on the finding that the internal neural representa-
tions of these particular ANNs are remarkably similar to the
neural representations in mid-level (area V4) and high-level
(area IT) regions of the ventral stream (D. L. K. Yamins, Hong,
& Cadieu, 2013; D. L. Yamins et al., 2014; Khaligh-Razavi
& Kriegeskorte, 2014), a finding that has recently been ex-
tended to neural representations in visual area V1 (Cadena et
al., 2017) and to patterns of behavioral performance in core
object recognition tasks (Rajalingham, Schmidt, & DiCarlo,
2015; Rajalingham et al., 2018).

However, at least two major potential limitations of this claim
have been raised. First, because the evaluation images are
randomly sampled from the same visual ”diet” as that used to
set the models internal parameters (photograph and rendered

object databases), it is unclear how far these models can ex-
trapolate their brain predictions. Second, because the models
are somewhat complex and have only been evaluated in terms
of predictive similarity (above), it has been argued that they do
not constitute an understanding of the ventral stream. A pro-
ductive variant of this criticism is: what new things can these
ANN models enable one to do?

Here we aimed to experimentally assess these potential
limitations of ANN ventral stream models. Specifically, we
used a deep ANN model to synthesize images that each are
specifically targeted to control V4 neural firing activity in two
settings. i) Neural ”Stretch” : synthesize images that ”stretch”
the maximal firing rate of any single neural site well beyond its
naturally occurring maximal rate. ii) Neural Population State
Control : synthesize images to independently control every
neural site in a small recorded population (75 V4 neural sites).
Specifically, we tested such population control by aiming to
set the population in an experimenter-chosen ”one hot” state
in which one neural site is pushed to be highly active while all
other nearby sites are simultaneously ”clamped” at their base-
line activation level.

Methods
Electrophysiological Recordings in Macaques
We sampled and recorded neural sites across the macaque
V4 cortex in the left and right hemisphere of two awake, be-
having macaques, respectively. In each monkey, we implanted
one chronic 96-electrode microelectrode array (Utah array),
immediately anterior to the lunate sulcus (LS) and posterior to
the inferior occipital sulcus (IOS), with the goal of targeting the
central visual representation (<5◦ eccentricity, contralateral
lower visual field). Each array sampled from ∼25 mm2 of dor-
sal V4. Recording sites that yielded a significant visual drive,
and high image rank-order response reliability (rpearson > 0.8)
across trials were considered for further analyses. In total, we
recorded from 75 valid V4 sites which included 50 and 25 sites
in the left and right hemisphere of monkey M and monkey N
(shown as inset in Figure 1), respectively.

We do not assume that each V4 electrode was recording
only the spikes of a single neuron. But we did require that
the spiking responses obtained at each V4 electrode main-
tained stability in their image-wise ”fingerprint” between the
day(s) that the mapping images were tested and the days that
the Controller images were tested (see below). Specifically,
we required an image-wise correlation of at least 0.8 tested
on a set of 25 naturalistic images that were shown every day



Figure 1: Overview of the synthesis procedure. A) The neural
control experiments were done through four steps. (1) a fixed
set of ANN features are mapped to the recorded set of V4 neu-
ral sites are used to create a predictive model of the activity of
those neural sites. (2) That differentiable model is then used
to synthesize ”controller” images for either single-site or pop-
ulation control. (3) These synthetic controller images are then
shown to the animal to evaluate the degree of control over the
neural sites. B) Response trajectories of multiple V4 neural
sites to one example image (averaged over ∼40 repetitions
of that image). Wide black line is the image presention time.
Shaded area is the time window over which the activity level
of each V4 neural site is computed (i.e. one value per neuron
per image). C) Receptive fields of neural sites in monkey M
(black) and Monkey N (red; see Methods).

(normalizer set). Each neuron’s firing rate in each recording
session was normalized by subtracting the mean and dividing
by the standard deviation of same neuron’s response to the
normalizer set.

Passive Viewing Task
During the passive viewing task, monkeys fixated a white
square dot (0.2◦) for 300 ms to initiate a trial. We then pre-
sented a sequence of 5 to 7 images, each ON for 100 ms
followed by a 100 ms gray blank screen. This was followed by
a water reward and an inter-trial interval of 500 ms, followed
by the next sequence. Trials were aborted if gaze was not
held within ±1◦ of the central fixation dot during any point. To
estimate the receptive fields (RF) of the neurons, we flashed
1◦x1◦ white squares across the central 10◦ of the monkeys’ vi-
sual field and measured the corresponding neural responses.

Natural Images
We used a large set (N=640) of naturalistic images to measure
the response of each recorded V4 neuron and every model
V4 neuron to each of these images. These images each con-
tained a three-dimensional rendered object instantiated at a
random view overlaid on an unrelated natural image in the

background, see (Majaj, Hong, Solomon, & DiCarlo, 2015) for
details.

V4 encoding model
To use the ANN model to try to predict and control each
recorded neural site (or neural population), the internal V4-
like representation of the model must first be mapped to the
specific set of recorded neurons. The assumptions behind
this mapping are discussed elsewhere (D. L. Yamins & Di-
Carlo, 2016), but the key idea is that any good model of a
ventral stream area must contain a set of artificial neurons
(a.k.a. features) that, together, span the same visual encod-
ing space as the brains population of neurons in that area
(i.e. the model layer must match the brain area up to a linear
mapping). To build this predictive map from model to brain,
we started with a specific ANN model with locked parameters.
(Here we used the Alexnet architecture trained on Imagenet
(Krizhevsky, Sutskever, & Hinton, 2012) as we have previ-
ously found the feature space at the output of Conv-3 layer of
Alexnet to be a good predictor V4 neural responses. We here
refer to this as model ”V4”.) We used the responses of the 75
recorded V4 neurons and the responses of all the model ”V4”
neurons to build a mapping from model to the brain. To do
this, we used principal component regression (PCR). Specifi-
cally, we split the neural data into two equally sized sets along
the images axis (train and test). The train set was used to
optimize the parameters of the mapping function (PCR) and
the test set was used to evaluate the prediction error of the
mapping function.

To further reduce the mapping error we used a variant of the
2-stage convolutional mapping function proposed in (Klindt,
Ecker, Euler, & Bethge, 2017). The resulting predictive model
of V4 (ANN features plus linear mapping) is referred to as the
mapped v4 encoding model and, by construction, it contains
the same number of artificial V4 neurons as the number of
recorded V4 neurons (50 and 25 neurons in monkeys M and
N respectively).

Synthesized ”Controller” Images
Each artificial neuron in the mapped V4 encoding model
(above) is a differentiable function of the pixel values f :
I w×h×c→Rn that enables us to use the model to analyze the
sensitivity of neurons to patterns in the pixels space. We then
defined the synthesis operation as an optimization procedure
during which images are synthesized to control the neurons
firing patterns in the following two scenarios.

1. Stretch: We synthesize controller images that attempt
to push each individual V4 neural site into a maximal activ-
ity state. To do so, we iteratively change the pixel values in
the direction of gradients that maximizes the firing rate of the
corresponding artificial V4 neuron. We repeated the proce-
dure for each neuron using five different random start seeds,
thereby generating five ”stretch” controller images for each V4
neural site.

2. One Hot Population: Similar to ”Stretch” scenario, ex-
cept that here we constrain the optimization to change the



Figure 2: Results for an example successful ”stretch” control
test. Normalized activity level of the target V4 neural sites
is shown for all of the naturalistic images (blue dots) and for
its five synthetic ”stretch” controller images (green dots; see
Methods).

pixel values in a way that i) attempts to maximize FR of the
target V4 neural site, and ii) attempts to maintain the predicted
FR of all other recorded V4 neurons at their response baseline
(here defined as their responses to pixel noise images that the
optimization runs starts from). This procedure was performed
once for each of the 75 neurons as the target neuron.

For each optimization run, we start from an image that
consists of random pixel values drawn from a standard Nor-
mal distribution and optimize the objective function for a pre-
specified number of steps using gradient descent algorithm
(steps=700). The procedure was considered to have failed
when it was unable to find an image predicted to drive the tar-
get neural site beyond its predicted response to noise images.
This procedure successfully maximized the objective function
for most target neural sites (∼95% for ”stretch” and 65-70%
for ”OHP”; see Table 1).

Results
We recorded 75 neurons from area V4 in two monkeys and
constructed a predictor model of the firing rate of each of
those neurons (See Methods). We then used a synthesis pro-
cedure (see methods section) to generate ”controller” images
that each attempted to control the recorded V4 population. To
test for successful control, we recorded from the same neural
sites in V4 on subsequent days in response to the synthesized
”controller images” (see Methods).

For the ”Stretch” controller tests, we found that we could
successfully drive ∼70% of neural sites beyond their maximal

observed firing rates (measured over 640 naturalistic images;
see Table 1). For the ”One-hot population” controller tests,
we generally were able to achieve reductions in the activity
of the ”off target” neural sites, even while maintaining a high
response of the target neural site (see examples in Figure 4).

Table 1: Summary of results. A total of 45 and 17 reliable neu-
ral sites were measured in monkeys M and N respectively (see
Methods). The first data column shows the fraction of control
attempts that failed because the synthesis procedure failed
(see Methods; no further neural recording was attempted in
these cases). The second and third columns shows two as-
sessments of control success. 95-Per = fraction of tested neu-
ral target sites for which at least one of the five controller im-
ages pushed the target neuron beyond 95% of its maximal
natural rate. ”Stretched” = fraction push beyond the maximal
natural rate. Numbers in parentheses = number of target neu-
ral sites in each case.

Monkey Opt. Type
Failed
Opt.

95-Per.∗ Stretched∗

M
Stretch 4%(2) 89%(40) 64%(29)
OHP 35%(16) 53%(24) 31%(14)

N
Stretch 6%(1) 82%(14) 70%(12)
OHP 29%(5) 53%(9) 29%(5)

In both monkeys the synthesized images drove the firing
rate of majority of neurons beyond the previously observed
values. Since our measurements were spanning several days,
we further removed neurons that their responses were not
correlated across days from the analysis (n=5 in monkey M
and n=7 in monkey N). Figure 2 shows the predicted and ac-
tual neural responses to these images as well as naturalis-
tic images that were initially used to determine the mapping
function. Images generated from different random seeds look
perceptually similar while they all drive the target neuron very
high. Table 1 summarizes the number of neurons for which
this procedure successfully drives the neuron’s response be-
yond previously observed values. In both monkeys, a large
set of neurons were successfully driven to the 95-percentile
of responses previously seen. Figure 3 shows several images
generated for 5 different neurons.

Discussion
We report that, using an ANN-model of the ventral stream, we
can drive the firing rates of most V4 neurons beyond naturally
occurring levels. And we find evidence that this procedure can
be extended to control the population (e.g. one hot states).
We believe that these results are the strongest test thus far of
deep ANN models of the ventral stream, and they show how
these models might be used to set desired brain states.
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Figure 3: ”Stretch” controller images for five example V4 neu-
ral target sites (N1-N5) with overlapping receptive fields. Each
row shows images generated using the same starting noise
image, but optimized for each of the target sites. Note the per-
ceptual similarity of the controller images for each site and the
perceptual dissimilarity across different sites.
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Figure 4: Tests of Neural Population State Control. Here
we synthesized controller images that attempted to push the
neural population into two different one hot states in which the
target neural site (red) is active and all other recorded neural
sites (gray) are at baseline (most of these neural sites have
overlapping receptive fields). Neural activity states are shown
for all V4 neural sites for controller images synthesized us-
ing the ”stretch” and ”one-hot population” (OHP) goals. Each
neural site’s plotted activity level is normalized so that zero is
the noise image activity level (our defined baseline), and 1.0
is the natural image maximal activation level. Compared with
the ”stretch” controller images, we found that the OHP con-
troller images were more selective in activating the target V4
site (the horizontal dashed line indicates the median ”off tar-
get” neural activity level)
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