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Abstract
Working memory provides the workspace for holding and
manipulating thoughts. It is flexible: we can hold any-
thing in mind. However, typical models of persistent ac-
tivity rely on tightly tuned attractors and do not allow for
the flexibility observed in behavior. Here we present a
novel model of working memory that maintains represen-
tations through random reciprocal connections between
two layers of neurons: a selectively tuned layer and a ran-
domly connected, untuned layer. As the recurrent interac-
tions are unstructured, the network is flexible: it is able to
maintain any input. However, adding multiple memories
lead to interferences in the untuned layer, which result in
a capacity limitation on the number of items that can be
maintained. This is due to divisive-normalization-like re-
duction in neural responses coming from E/I balance in
the network. Furthermore, it has been shown that time
and load have a degrading effect on memory precision.
Interferences in the network provide a possible mecha-
nism for this psychophysical finding, as well as key neu-
rophysiological results. Thus, we present a simple net-
work model that allows for flexible representations while
still capturing behavioral and neural hallmarks of working
memory.
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Working memory plays a critical role in cognition, decou-
pling behavior from the immediate sensory world. On the one
hand, it is flexible. Indeed, one can hold anything in working
memory and, more importantly, one can do it from the first
experience. On the other hand, the capacity of working mem-
ory is limited to 4 items, a result found to be consistent in
many paradigms in both humans and monkeys (Luck & Vogel,
1997; Buschman, Siegel, Roy, & Miller, 2011). Previous work
has shown that the contents of working memory are reflected
in the activity of neurons distributed across the brain, includ-
ing prefrontal cortex, parietal cortex, and sensory cortex, as
well as sub-cortical regions (Christophel, Klink, Spitzer, Roelf-
sema, & Haynes, 2017). These representations are thought
to be encoded in the persistent activity of neurons (Barak &
Tsodyks, 2014). Persistent activity is commonly modeled as
a result of recurrent network interactions that generate stable
fixed points in the network’s dynamics (although some models
rely on single cell biophysics). Other key neurophysiological
properties are related to the dynamics of neural responses
during working memory: e.g. the transient activity of a pop-
ulation of neurons, as well as “activity-silent” changes in the
network (Stokes, Buschman, & Miller, 2017). Transient activity

may reflect sequential activation of neurons and could co-exist
with persistent activity either because the transient dynam-
ics are orthogonal to the persistent representations (Murray
et al., 2016) or they are balanced in a way that doesn’t im-
pact readout. Activity-silent representations may rely on short-
term synaptic plasticity. However, many of these models fail
to capture a defining characteristic of working memory – its
flexibility. Models that rely on attractor or transient dynamics
are inflexible; they must be finely tuned to remember specific
items or the attractors must emerge through learning. Other
models depend on synaptic plasticity or change in single-cell
biophysics and show flexibility in representation, but do not
account for the limited capacity of multi-item working memory
seen in biology.

Here we propose a novel, flexible, model of working mem-
ory that relies on random reciprocal connections to generate
persistent activity. As the connections are random, they are in-
herently untuned and do not need to be learned, allowing the
network to maintain any representation. However, this flexi-
bility comes at a cost - when multiple memories are stored in
the network, they begin to interfere, imposing a capacity limit.
Thus, our model provides a mechanistic explanation for the
limited capacity of working memory; it is a necessary trade-off
for working memory’s flexibility.

The model
We model a simplified two-layer network of inhomogeneous
Poisson spiking neurons (Fig. 1A). The firing rate of post-
synaptic neuron i is a non-linear function of the weighted sum
of all pre-synaptic inputs ri(t) = Φ(∑ j Wi js j(t)) where Wi j
is the synaptic strength from presynaptic neuron j, s j is its
synaptic activation, and Φ is a hyperbolic tangent. The first
layer consists of 8 independent sensory networks, each of 512
neurons. These networks mimic simplified sensory networks,
with neurons arranged topographically according to selectiv-
ity. Position around the ring corresponds to specific values of
an encoded feature, such as orientation or color. Consistent
with biological observations, connections within a sensory net-
work have a center-surround structure: neurons with similar
selectivity share excitatory connections while more dissimilar
neurons have inhibitory connections (Fig. 1A, inset). Recur-
rent excitation in each of these networks is low such that they
do not maintain memory by themselves. For simplicity, each
sensory network is independent and can be thought of as re-
flecting stimuli at different locations in space. This allow us
to vary working memory load. Note that, although indepen-
dence of networks is not biological, we make this simplifying
assumption in order to emphasize the impact of interactions
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Figure 1: (A) Model layout. Only 2 (of 8) sensory networks are shown. The inset represents the center-surround connectivity structure of a
sensory network. (B) Raster plot of a simulated trial. Seven sensory networks receive an initial Gaussian input from 0.1s to 0.2s (thick blue
horizontal bar). Only four memories are maintained. (C) Average firing rate of a sensory network, at the end of the delay period, as a function
of distance between the prefered color, and depending the set size (SS). (D) Average firing rate of the random network, at the end of the delay
period, as a function of distance from the prefered color of a single sensory network, and depending on the set size.

in the second layer. The second layer is the random network,
and is composed of 1024 neurons randomly and reciprocally
connected to neurons in the sensory networks. In a presented
version of the model, random neurons are not connected to
each other (although we relax this constraint in future mod-
els). Each neuron in the random network has bi-directional
excitatory connections with a random subset of neurons from
the sensory networks (the default connectivity γ is 0.3). In
between both networks, neurons receive balanced excitatory
and inhibitory drive. To achieve this, all pairs of random and
sensory neurons without excitatory connections have direct,
weak, inhibitory connections, such that the sum total excita-
tory weights equals the sum total inhibitory weights for any
given neuron. Note that both the bidirectionality and the bal-
ance constraints can be partially relaxed (not discussed here).

Importantly, all sensory networks converge onto the same
random network. Neurons in the sensory networks show
physiologically realistic tuning curves, due to their center-
surround architecture (Fig. 1C). This tuning is effectively in-
herited by the random network (Fig. 1D). However, there is no
consistency in the tuning of random neurons across inputs to
different sensory networks. This is due to the fact that con-
nectivity is random and therefore inconsistent across sensory
networks. This leads to neurons in the random network show-
ing “conjunctive” coding, preferentially responding to different
inputs in different sensory networks (e.g. different colors at
different locations, as observed in prefrontal neurons (Fusi,

Miller, & Rigotti, 2016)).

Sensory stimuli are presented as Gaussian inputs during
100ms before the 900ms delay (Fig. 1B). Despite its simple ar-
chitecture, and without involving any learning mechanism, the
network is able to maintain stimulus inputs over an extended
memory delay. This is due to the bidirectional connections be-
tween the sensory and random networks. Activity in the sen-
sory network feeds-forward into the random network, activat-
ing a random subset of neurons. In turn, these random neu-
rons feed-back into the sensory network, maintaining activity
after the stimulus input is removed. In this way, the network is
able to flexibly maintain the representation of any input into the
sensory network. This relies on sufficient recurrent activity be-
tween the sensory and random networks. Given the connec-
tivity γ= 0.3, we tune the feedforward excitatory strength such
that one input to a sensory network is maintained (Fig. 2C,
blue line, y-axis of the ROC plot), without creating an exces-
sive top-down drive on the feedback pathway. Thus activity in
the random network does not lead to sustained representa-
tions in other sensory networks (called “spontaneous” memo-
ries, Fig. 2C, blue line, x-axis of the ROC plot). As feedback
connections are random and distributed over the sensory net-
work, they “destructively interfere” at other locations, resulting
in a slight increase in noise but no sustained representations.
In other words, the feedback input from the random network to
other sensory networks is orthogonal to the inherent dynamics
of the sensory network and therefore is not maintained.
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Figure 2: (A) Percentage of correct memories, after 1 second of network simulation, as a function of initial set size. (B) Speed of forgetting
during the delay period as a function of the initial set size (SS). The speed is load-dependent. (C) ROC plot showing the probability of correctly
maintaining a memory (hit rate) on the y-axis, as a function of the probability of creating a spontaneous memory in the other sensory networks
(false alarm). Light to dark shades of colors stands for an increase of the net excitatory feedforward synaptic weight. Different colors represent
different initial set sizes (SS). (D) Probability of correctly maintaining two memories in two sensory networks as a function of the coherence
between the two initial inputs with respect to the feedforward weight matrix W to the random network. (E) Firing rate contrast for a subset
of random neurons (about 10%), defined by a firing at a minimum difference of 40Hz between prefered (continuous line) and non-prefered
(dashed line) inputs, and as a function of initial set size. Reproducing Fig. S2 of (Buschman et al., 2011)) (F) Standard deviation of the error
distribution from maximum likelihood decoding after 1 second of network simulation, as a function of initial set size.

Interference between memory representations
imposes a capacity limit

Multiple memories can be stored in the network simultane-
ously (Fig. 1B), but the capacity of the network is limited.
Fig. 2A shows the percentage of correct memories, at the
end of the delay period, as a function of load (initial set size).
This closely matches behavioral results (Luck & Vogel, 1997;
Buschman et al., 2011). Also consistent with behavior, the
speed of forgetting during the delay period increases with
load (Fig. 2B). Importantly, there is no feedforward excitatory
weight that permits unlimited capacity for all possible initial
set sizes without creating spontaneous, spurious memories
(Fig. 2C).

For a few items, memories do not significantly overlap - as
there is sufficient space in the high-dimensional random net-
work for multiple patterns to be maintained. Some memories
don’t interfere. In general, a relatively small change in perfor-
mance will be observed depending on the coherence of the in-
puts to different sensory networks with respect to their projec-
tion onto the random network (Fig. 1D). However, as the num-
ber of inputs to the sensory networks is increased, interfer-

ence in the random network comes into play, causing memory
failures. These are a result of the balance between excitation
and inhibition into every neuron. As more inputs are presented
in the sensory networks there is an increase in the effective
inhibition on each activated neuron in the random network,
suppressing its activity. This leads to a divisive-normalization-
like reduction in neural responses as the number of to-be-
remembered stimuli are increased (Fig. 2E), consistent with
experimental observations (Buschman et al., 2011). As the
level of activity is reduced, eventually it is insufficient to sus-
tain the representation across both networks, and the memory
is lost. Thus within the bounds of the random, reciprocal, and
balanced connectivity implemented in the network, the limited
capacity is a necessary trade-off for working memory flexibil-
ity.

Another key aspect of working memory capacity is the pre-
cision of analog recall as a function of load in human and mon-
keys. This measure have been important to assess whether
working memory capacity is due to a limited amount of avail-
able slots, memorized with the same precision, or due to a
shared ressource among items that compete for precision



when the set size increases. It has been found that the er-
ror distribution variability increases steadily with the set size,
arguing for the ressources model (Ma, Husain, & Bays, 2014).
In our model, memory representations drift over time, due
to the accumulation of noise from Poisson variability in neu-
ral spiking (Burak & Fiete, 2012). Greater interference in the
random network leads to weaker feedback, increasing the ef-
fect of noise, thus causing greater drift in the representations.
Memory representations degrade: the circular error increases
as a function of memory load (not shown here). In addition
the excitation/inhibition balance has the effect of reducing the
signal to noise of neural activity, and thus the ability to accu-
rately decode the memory representation in a finite amount of
time (Fig. 2F). Together, these effects lead to an increase in
memory error with increasing load and time, consistent with
experimental results (Pertzov, Bays, Joseph, & Husain, 2013;
Ma et al., 2014).

Stable and dynamic encoding of memories

The model also captures other key electrophysiological find-
ings related to working memory. First, as noted above,
the random nature of connections in our model yields high-
dimensional, mixed-selective, representations in the random
network; as has been seen in prefrontal cortex (Fusi et al.,
2016). Second, our model shows the same combination
of stable and dynamic representations seen in neural data.
Heterogeneous activity can be simply added in the random
network either by intrinsic recurrence, noise, or as a conse-
quence of a transient stimulation preceding the delay period.
Building on methods described in (Murray et al., 2016), we
apply dimensionality reduction to the high-dimensional state
space of neural activity in the random network in response
to the presentation of 8 different stimuli values into the first
sensory network. Fig. 3A shows the projection of the time-
dependent neural activities into the mnemonic subspace com-
posed by two leading principal components capturing stimulus
encoding (Stimulus PC1 and PC2). The random network ex-
hibits temporal dynamics during working memory. However,
the interactions with the sensory network stabilize these dy-
namics to a mnemonic null space. The high-dimensional state
space of the random network contains a low-dimensional sub-
space in which each stimulus representations are separable
and stable across time during the delay period. This allows
for a stable memory representation over time and linear read-
out. Moreover, the two leading principal axes provide quasi-
sinusoidal coding of stimuli (Fig. 3B), remarkably reproducing
the recent monkey eletrophysiology results cited above. The
model goes even further by establishing a prediction on the
effect of load on the mnemonic subspace. This subspace is
stable, and a discriminator built from the network activity when
presented with a single item could be used to decode network
activity when the load is increased (Fig. 3C). However the dis-
criminability between memories in this subspace decreases
with load, making them harder to decode.
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Figure 3: (A) Population trajectories during the delay period projected
onto the mnemonic subspace. Each trace corresponds to a stimulus
condition, and each point is a 100msec timestep. (B) Projections
of the time-averaged delay activity along the leading principal axes.
(C) Discriminability between memories as a function of load, com-
puted by the euclidian distance between memories in the mnemonic
subspace, corrected by the euclidian measure within each cluster for
each memory over time.
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