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Abstract: 
 

Deep convolutional neural networks (DNNs) are currently the 
best computational model for explaining image representations 
across the visual cortical hierarchy. However, it is unclear how 
the representations in DNNs relate to those of simpler “oracle” 
models of features and categories. We obtained DNN (AlexNet) 
representations for a set of 92 real-world object images. Human 
observers generated category and feature labels for the images. 
Category labels included subordinate, basic and superordinate 
categories; feature labels included object parts, colors, textures, 
and contours. We used the AlexNet representations and labels 
to explain brain representations of the images, measured with 
fMRI in humans and cell recordings in monkeys. For both 
human and monkey inferior temporal (IT) cortex, late AlexNet 
layers perform similarly to basic categories and object parts. 
Furthermore, late AlexNet layers can account for more than 
half of the variance that these labels explain in IT. Finally, while 
feature and category models predominantly explain image 
representations in high-level visual cortex, AlexNet layers 
explain representations across the entire visual cortical 
hierarchy. DNNs may provide a computationally explicit model 
of how features and categories are computed by the brain.  
 
Keywords: object vision; primate; features; categories; DNN 

 

Introduction 

The best models for explaining responses in primate high-
level visual cortex have for long been “oracle” models. 
Oracle models consist of object labels generated by human 
observers, and thus leave open how the visual system 
computes the labels. However, in recent years, deep 
convolutional neural networks (DNNs) have revolutionized 

computer vision, reaching human-level performance on 
object classification. Like the visual system, DNNs learn 
representations of rich inputs, such as colored real-world 
object images. DNNs predict representations of object 
images in visual cortex, as measured in humans via fMRI  
(Khaligh-Razavi & Kriegeskorte, 2014) and in monkeys via 
electrophysiology (Yamins et al., 2014). These findings 
suggest that there are considerable similarities between DNN 
and brain representations of objects. However, even DNNs 
capable of near-human-level object classification 
performance classify certain images in highly 
counterintuitive ways (e.g. a leopard pattern sofa as a 
leopard), calling into question their commonalities with brain 
representations.  
 
To investigate the commonalities of DNNs with brain 
representations, we use a well-known DNN (AlexNet) to 
predict brain representations of object images and compare 
its performance to that of oracle models consisting of feature 
and category labels. Does AlexNet explain the brain data as 
well as the oracle models do? Do the two types of models 
explain the same variance? 

 
Methods 

Stimuli 
 
Stimuli were 92 colored images of real-world objects 
spanning a range of categories, including humans, non-
human animals, natural objects, and artificial objects. Objects 
were segmented from their backgrounds and presented on a 
gray background. 
 



 

Monkey Single-Unit Recordings 
 
Macaque monkeys (n=2) viewed the images while single-unit 
responses were recorded from anterior IT cortex (674 
neurons, data from Kiani, Esteky, Mirpour, & Tanaka, 2007). 
Monkeys performed a fixation task. Images were presented 
at the center of fixation (size: 7° visual angle, stimulus 
duration: 105 ms). Spike rates were averaged within a 140 ms 
window (71-210 ms after stimulus onset). 

Human fMRI 
 
Subjects (n=15) viewed the images while their brain activity 
was measured with a 3T fMRI scanner (GE EPI, TR: 2s, 
voxel resolution: 2 mm3, data from Cichy, Pantazis, & Oliva, 
2014). Subjects performed a fixation task. Images were 
presented at the center of fixation (size: 2.9° visual angle, 
stimulus duration: 500 ms). Regions of interest (ROIs) were 
defined in each subject. V1 was defined using an anatomical 
eccentricity template (361 voxels on average), IT was defined 
using an anatomical mask of bilateral fusiform and inferior 
temporal cortex (361 most strongly activated voxels). We 
also performed a volume-based searchlight analysis in each 
subject (radius of 4 voxels, Spearman’s r, two-sided 
Wilcoxon signed-rank test, FDR controlled at 0.05).  
 
Oracle Models  
 
Human observers generated visual feature labels (e.g., “eye”) 
and category labels (e.g., “animal”) for the images (Jozwik, 
Kriegeskorte, & Mur, 2016). Feature labels were divided into 
parts, colors, textures and contours, while category labels 
were divided into subordinate categories, basic categories 
and superordinate categories. The final full feature and 
category models consisted of 119 and 110 labels, 
respectively.  
 
Deep Neural Network (AlexNet) 
 
We computed activations for the images in each layer of 
AlexNet (Krizhevsky, Sutskever, & Hinton, 2012). AlexNet 
was trained on the ImageNet database to classify images into 
1,000 categories. We used convolutional (conv) and fully-
connected (fc) layers in our analyses.  
 
Comparing Model Performance 

We computed response patterns (across neurons, voxels, 
features, categories, and units within AlexNet layers) for each 
image. We then computed response-pattern dissimilarities 
between images and placed these in a representational 
dissimilarity matrix (RDM). An RDM captures which 
distinctions among stimuli are emphasized and which are de-
emphasized by a particular model or brain region. We 
estimated model performance by correlating model and data 
RDMs using Kendall’s rank correlation coefficient tau a. We 

determined whether each of the model RDMs was 
significantly related to the data RDMs using a stimulus-label 
randomization test (10,000 randomizations) for the monkey 
data and a subject-as-random-effect analysis for the human 
data (one-sided Wilcoxon signed-rank test). We subsequently 
tested for differences in model performance between each 
pair of models using bootstrap resampling of the stimuli 
(1,000 resamplings) for the monkey data and a subject-as-
random-effect analysis for the human data (two-sided 
Wilcoxon signed-rank test). For each analysis, we accounted 
for multiple comparisons by controlling the FDR at 0.05. 
 

Results 

Comparison of Oracle and AlexNet Model 
Performance at Explaining Primate IT 
 
We have previously shown that both features and categories 
explain the human IT object representation well (Jozwik et 
al., 2016). Do late AlexNet layers explain human IT as well 
as these models derived from human perception? To evaluate 
this, we compared performance at explaining human IT 
between AlexNet layers and feature and category models. We 
also tested a model that combined all feature and category 
labels together (“features and categories”). Results indicate 
that late AlexNet layers (layers 6 and 7) perform at a level 
similar to basic and superordinate categories and object parts, 
but outperform the other feature models (color, contour, 
texture) (Figure 1BC). Performance of AlexNet layer 1 is in 
a similar range as that of the color, contour and texture 
models. Results for monkey IT (Figure 1AC) are largely 
consistent with those for human IT. In contrast, for human 
V1, earlier AlexNet layers 2 and 3 perform best, 
outperforming all feature and category models. 
 
Similarity of Object Representations in Oracle 
Models and AlexNet Layers 
 
Similar model performance does not necessarily indicate that 
models explain the same variance. To address this issue, we 
first examined the degree of similarity between the object 
representations in the two types of models by correlating 
every oracle model with every AlexNet layer (Figure 2). 
Given the proximity of late AlexNet layers to the final 
category readout, we might expect the object representation 
in late layers to match the object representation in category 
models. Indeed, late AlexNet layers (layers 6-8) appear to 
correlate more strongly with the category models than earlier 
AlexNet layers (layers 1-3) do. This progression from early 
to late layers is weaker but also visible for the object-part and 
all-features models. These observations suggest that late 
AlexNet layers should be able to account for a substantial 
proportion of the variance that oracle models explain in IT. 
Indeed, we found that late AlexNet layers 6 and 7 each can 
account for approximately half of the IT variance explained 
by object parts, and for approximately sixty percent of the IT 



 

variance explained by categories (this holds for all categories 
except subordinate categories). 
 
 
 

 
 
Figure 1. AlexNet and oracle model performance at explaining 
monkey and human IT representations. (A) Bars show the 
correlation between the monkey IT RDM and each model RDM. A 
significant correlation between a model RDM and the IT RDM is 
indicated by an asterisk (stimulus-label randomization test, FDR 
controlled at 0.05). Error bars are based on bootstrap resampling of 
the stimuli. “conv” indicates a convolutional layer and “fc” indicates 
a fully-connected layer. (B) Bars show the correlation between the 
human IT RDMs and each model RDM, using the same conventions 
as in Figure 1A, but using subject-as-random-effect analyses for 
inference and error bars. The gray bar represents the noise ceiling, 
indicating the expected performance of the true model given the 
noise in the data. (C) Pairwise differences between model 
performance for monkey and human IT. Green color indicates 
significant pairwise differences based on bootstrap resampling of 
the stimuli (monkey) or subject-as-random-effect analysis (human) 
(dark green: FDR < 0.01, light green: FDR < 0.05).  
 
 
 

 
 
Figure 2. Correlations between AlexNet and oracle model RDMs. 
 
 
Comparison of Oracle and AlexNet Model 
Searchlight Maps 
 
To complement our ROI analysis, we performed a searchlight 
analysis on the human fMRI data, testing where else in the 
brain AlexNet layers and oracle models explain image  
representations (Spearman’s r, two-sided Wilcoxon signed-
rank test, FDR controlled at 0.05). Results are shown in 
Figure 3. Visual inspection of the results reveals that there is 
little correspondence between the layer 1 object 
representation and the brain representations; the layer 2 and 
3 object representations explain the brain representation in 
similar locations as colors; the layer 6 and 7 representations 
explain the brain representation in similar locations as 
superordinate categories. High-level visual cortex 
representations that are explained well by both the category 
and feature models were best captured by layers 7 and 8. One 
difference between the representations of oracle and AlexNet 
models is that for most feature and category models (except 
color and superordinate categories) the location of the 
representations is confined to high-level visual cortex, 
suggesting that oracle model representations are already quite 
complex. For almost all AlexNet layers (with the exception 
of layer 1 that has almost no signal) representations match 
brain representations in both early and high-level visual 
cortex. Therefore, AlexNet seems to better capture the entire 
visual hierarchy including early, intermediate and high-level 
representations. 
 
In summary, late AlexNet layers outperform most feature 
models (color, texture, contour, but not object parts), but not 
category models, in explaining primate IT. Object 
representations in late AlexNet layers correlate with 
categories and object parts but less so with lower-level visual 
features. Furthermore, late AlexNet layers can account for 
more than half of the variance that categories and object parts 
explain in IT. Searchlight analysis shows that AlexNet 
captures object representations across the visual hierarchy, 
whereas oracle models correlate mostly with representations 
in high-level visual cortex.  



 

 

Figure 3. Searchlight analysis results, showing where in the brain 
oracle models and AlexNet layers explain image representations 
(Spearman’s r between model and brain representations, two-sided 
Wilcoxon signed-rank test, FDR controlled at 0.05). 

Discussion 

DNNs perform considerably well at predicting object 
representations across the primate visual system (Khaligh-
Razavi and Kriegeskorte, 2014; Yamins et al., 2014). To 
better understand the similarities and differences between 
intuitive oracle models and complex DNNs, we compared 
DNN (AlexNet) representations to those of oracle models. 
Late DNN layers explain similar amounts of variance in 
primate IT as category and object-part models. The 
categorical representations in late DNN layers might 
contribute to their explanatory power. Consistent with this 
hypothesis, we show that late DNN layers can account for 
more than half of the variance that categories can explain in 
IT. Late DNN layers explain more variance than lower-level 
feature models, which further suggests that they can model 
variance that cannot be explained by lower-level visual 
features alone.  
 
Searchlight analysis revealed a progression from early to 
high-level visual cortex with increasing DNN layer number. 
However, this progression is relative: even late DNN layers 
can explain representations in early visual cortex. This result 

indicates that object features may be overrepresented at late 
stages of processing in DNNs. This phenomenon could 
potentially contribute to adversarial examples or 
misclassification of objects. For example, a common 
misclassification of a sofa with a leopard pattern as an actual 
leopard, might result from a DNN relying too much on 
texture information. It is possible that some of the features 
that humans extract for categorization are different from 
those that DNNs extract. Nevertheless, DNNs are better than 
oracle models at explaining the object representation in early 
and intermediate visual cortex, capturing the entire visual 
hierarchy. The correspondence between representations in 
oracle models and DNN layers suggests that DNNs may 
provide a computationally explicit model of how features and 
categories are computed in the primate brain. 
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