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Abstract
Humans are thought to transfer their knowledge well
to unseen domains. This putative ability to generalize
is often juxtaposed against deep neural networks that
are believed to be mostly domain-specific. Here we as-
sessed the extent of generalization abilities in humans
and ImageNet-trained models along two axes of image
variations: perturbations to images (e.g., shuffling, blur-
ring) and changes in representation style (e.g., paintings,
cartoons). We found that models often matched or ex-
ceeded human performance across most image perturba-
tions, even without being exposed to such perturbations
during training. Nonetheless, humans performed better
than models when image styles were varied. We thus
asked if there was any linear decoder that, when applied
on model features, would rectify model performance. By
adding examples from all representation styles to de-
coder training, we found that models matched or sur-
passed human performance in all tested categories. Our
results indicate that ImageNet-trained model encoding
space is sufficiently rich to support suprahuman-level
performance across multiple visual domains.
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Introduction
Humans are thought to be able to learn rapidly from few
examples and flexibly transfer their knowledge to new en-
vironments and tasks (Hassabis, Kumaran, Summerfield, &
Botvinick, 2017). In everyday visual perception tasks, hu-
mans appear to be robust to various visual perturbations such
as blur and occlusion as well as drastic changes in input
statistics, seamlessly switching from recognizing objects in
photographs to recognition in line drawings even in the ab-
sence of prior experience (Hochberg & Brooks, 1962). In con-
trast, while hugely successful in reaching high performance in
various object recognition challenges, deep neural networks
nonetheless show domain-specificity such that changes to in-
put statistics decrease their performance (Kornblith, Shlens,
& Le, 2018). But while humans are believed to be better
than models at generalization, few detailed comparisons have
been carried out to date to rigorously quantify such putative
discrepancies. Here we set out to document human ability
to categorize objects in a challenging core object recognition
task (DiCarlo, Zoccolan, & Rust, 2012) and to see how current
state-of-the-art deep neural networks compare to humans on
this task.

Methods

Image sets

In order to test generalization abilities extensively, we pre-
sented both humans and models with a broad range of stimuli,
ranging from familiar naturalistic scenes to stimuli only familiar
to humans but not models (e.g., artistic and blurry images) to
stimuli that were unlikely to be part of their experience (e.g.,
block-shuffled and swirled images) (Figure 1). Our stimulus
set spanned six styles: synthetic naturalistic images, referred
to as ”HvM dataset” (Pinto, Cox, & DiCarlo, 2008), natural
photographs from Microsoft COCO dataset (Lin et al., 2014),
paintings, sketches, cartoons, and line drawings. HvM im-
ages were generated by randomly pasting a 3D object model
onto a random naturalistic background (Pinto et al., 2008).
COCO images were constrained to roughly match HvM im-
ages, namely: (i) only had one of the 10 tested object cate-
gories present, (ii) were matched in object size, and (iii) were
cropped a square aspect ratio such that object placement was
less biased to center. Artistic images were collected from free
online resources.

Using HvM and COCO images, we also generated per-
turbed versions of the original images by dividing images into
blocks and shuffling them around (3 sizes of blocks), blurring
images (4 levels of blur), swirling images at the center of the
target object (3 levels of swirl), and converting target object
into its silhouette and further making a convex hull out of this
silhouette. For HvM images, we additionally generated out-
lines of objects and their skeletonized representations, and
also ”mosaic” images that were generated by pasting a 3D
model on a light texture and applying neural style transfer with
an image of a mosaic as a source style (Huang & Belongie,
2017).

Each set contained 12 images per each of 10 object cate-
gories (bear, elephant, person, car, dog, apple, plane, chair,
zebra, bird).

Human testing

On each trial, the observer was presented (100 ms duration)
an image containing a target object and asked to report its
identity by choosing from two options that immediately ap-
peared after the test image. Each participant completed 200
trials and were only allowed to participate once for a given set
of stimuli (for instance, only once for HvM blur level 3 images).
Approximately 10 responses per image were collected (i.e.
10 observers). All experiments were conducted on Amazon
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Figure 1: Models and humans perform similarly in visual domains that are either familiar (e.g., naturalistic stimuli) or unfamiliar to
both (e.g., block-shuffled stimuli). However, humans are generally better in visual domains that could have been familiar only to
them but not to models (e.g., cartoons). Note that models have been exposed only to ImageNet and original HvM images during
training. Error bars depict 95% bootstrapped confidence intervals across images. (Responses to COCO-style images are not
reported in this figure.)

Mechanical Turk platform and approved by Massachusetts In-
stitute of Technology’s Committee on the Use of Humans as
Experimental Subjects (COUHES).

Model testing
We recorded artificial neural network (ANN) responses to ev-
ery test image in the penultimate layer of ImageNet-trained
ResNet-152 (He, Zhang, Ren, & Sun, 2016) and PNASNet
(Liu et al., 2017) (state-of-the-art ImageNet model until very
recently) using their TensorFlow Slim implementation. Since
both ANN models lead to qualitatively very similar results, only
ResNet-152 is reported. A 10-way logistic regression classi-
fier was trained using these features in order to extract model’s
response probabilities for the 10 object categories used in the
experiments. In our analyses, we contrasted training on only
HvM or COCO images to training on images from all sets,
thus the number of training images was matched between the
two procedures. When comparing model performance on per-
turbations, 176 images per category were used to match the
number of images in a 12-fold cross-validation procedure used
on all images. When comparing model performance on style
changes, 33 images per category were used (since there were
fewer styles than perturbations). However, note that human-
level performance can be achieved with much less training im-
ages; here we used the maximal possible number of train im-
ages to assess how well models can do in principle. Model
response probabilities were further converted into two-way re-
sponses for each target-distractor pair to match the task for-
mat given to humans.

Results
Models generalize as well as humans on visual
perturbations

We found that human performance across various visual do-
mains was not uniform but rather spanned a broad range from
nearly perfect to close-to-chance performance (Fig. 1, red
dots). On the other hand, we observed that deep nets were
less fragile than expected, generally closely following human
response patterns, even without being trained on any of these
perturbations (Fig. 1, blue dots).

We first explored these differences for visual perturbations
(Figure 2a). We found that models matched human-level per-
formance on most of these perturbations in the HvM-style im-
age sets. Notably, humans were overall more robust to blur,
in line with previous studies (Geirhos et al., 2017), and to mo-
saic and outline representations. We further asked whether
models could have benefited from a rather restricted gen-
erative HvM space as it contained only 10 particular three-
dimensional object models and, given sufficient training, a lin-
ear classifier could have capitalized on the idiosyncratic fea-
tures of these precise models, resulting in an overestimation
of deep nets’ ability to generalize.

We therefore additionally tested humans and models on
COCO images and their perturbed variants where each im-
age contains virtually unique objects. Somewhat surprisingly,
deep nets generalized as well or better on COCO-style im-
ages even though overall human performance did not degrade
as much compared to perturbations on HvM-style images. We
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Figure 2: Training models only on naturalistic images suffices to reach or exceed human-level performance across most image
perturbations (a) but it does not generalize well to other images styles (b). However, object category information is linearly
decodable from model features in all cases (”train on all” plots), suggesting that model representations are sufficiently rich to
support broad generalization. Error bars depict 95% bootstrapped confidence intervals across images.

reasoned that both humans and models used contextual in-
formation in their judgments because, unlike in HvM-style im-
ages, image background was correlated with object category.
Yet models apparently utilized on this contextual information
more than humans, closing the human-model gap observed
in HvM-style images.

Models generalize worse than humans across
visual styles

Next, we compared human and model performance across
image styles. In this case, model classifier was only trained
on the original HvM and COCO images but not on any of
the artistic images. We found that models were generally
worse than humans in generalizing to unfamiliar visual styles
(Fig. 2b). Curiously, models did not show an impairment to
paintings, suggesting that, albeit non-photographic, they may
share fairly similar statistics to natural photographs already fa-
miliar to models. Observe however, that this effect was only
due to training on COCO images; training on HvM images
alone retains human advantage (see Fig. 1).

Object representations are disentangled in model
feature spaces

Since models appeared to be more sensitive to changes in vi-
sual style, we wondered if it reflected the lack of linearly sepa-
rable representations in model feature space given the lack of
exposure to such styles during model training. Alternatively,
models might have learned sufficiently rich visual representa-
tions to support disentangled representations of object cate-
gories even when presented with unfamiliar visual styles, and
those could be in principle utilized by a better decoder.

We therefore trained linear decoders using samples from all

image sets. We found that a simple linear decoder could dis-
tinguish between all 10 object categories at or slightly above
human level for all image styles simultaneously (Fig. 2, ”train
on all” plots) while on perturbed images, model performance
vastly exceeded human generalization abilities.

Discussion
Overall, we observed that both humans and these specific
deep artificial neural networks are generally well-matched
across a wide range of visual stimuli in a core object recog-
nition task. Furthermore, we found that the deep nets contain
sufficiently disentangled representations of object categories,
even for image styles they have not encountered during their
training. Our results therefore indicate that merely improving
the decoder part of the model and retaining the ImageNet-
trained encoder may be sufficient to achieve human-level gen-
eralization abilities out-of-the-box, at least on the range of vi-
sual image domains we have tested here.

On the other hand, while our stimuli covered multiple visual
domains, our task remained fairly simple, where in each trial
humans and models only had two choices and only ten ob-
ject categories were present. More challenging versions of
this task, such as multiple choice or free labeling, and more
stringent evaluation metrics, such as behavioral consistency
(Rajalingham et al., 2018), might reveal discrepancies be-
tween human and model ability to generalize that our metric
might not have been sufficiently sensitive to.
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