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Abstract
Primates can rapidly identify visual objects; an ability
supported by the ventral visual stream. We have recently
reported that object information emerges in the inferior
temporal (IT) cortex with distinct image-dependent dy-
namics. However, the current most parsimonious model
that accurately links IT neural activity to primates’ core
object recognition behavior involves learned weighted
sums of IT firing rates, specifically integrating the IT
evidence over a single, fixed time window (70 to 170
ms post image onset). Here we collected new data to
test whether this baseline model could accurately predict
image-level primate object confusion patterns and found
that it could not fully do so. Therefore we built and tested
a more biologically-plausible linking model that imple-
ments leaky IT evidence accumulation. This models accu-
rately predicts the monkeys’ image-by-image behavioral
patterns tested on 45 binary object discrimination tasks.
Furthermore, we discovered that the trial-by-trial behav-
ior of this same model partly predicts the animal’s trial-
by-trial choices on ambiguous images. Taken together,
these results argue that IT population dynamics are rele-
vant to core object recognition behavior and we provide a
new, improved model of the mechanistic linkage between
IT and core object recognition behavior.

Keywords: IT; core object recognition; dynamic decoder; pop-
ulation code; leaky evidence accumulation

Introduction
Previous studies on the neural mechanisms of primate visual
object recognition (Hung, Kreiman, Poggio, & DiCarlo, 2005)
have demonstrated that the identity and category of an object
in an image at the center of gaze is often accurately conveyed
in the population activity patterns of the inferior temporal (IT)
cortex in macaques. To quantitatively link the IT population ac-
tivity to the primates’ behavioral patterns, Majaj et al. (2015)
provided a simple linear decoding model (learned weighted
sums of randomly selected average neuronal responses spa-
tially distributed over monkey IT; LaWS of RAD IT) that was
sufficient to explain and predict the average performance in
each of a set of 64 tested core object recognition tasks. How-
ever, that study did not have the behavioral or neural reso-
lution to assess if that linking model could accurately predict
behavioral performance for each individual image. In addition,
the linking model seemed somewhat biologically simplistic in
that it integrated IT responses across a long, fixed temporal
window (i.e. 70 ms to 170 ms triggered on image-onset). Us-
ing many more repeats of model-selected images, we have
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Figure 1: Temporal evolution of instantaneous linearly-
decodable object identity evidence in IT on an image-by-
image basis. For each tested image (top panel: example
image containing zebra), we measured the IT population re-
sponse vector (n=628) across time (10 ms bins). For each
time bin, we built a linear decoder (cross-validated across im-
ages) to estimate the instantaneous neural decode (I1; re-
fer Methods) accuracy (entire time course shown in the bot-
tom panel). Three additional example image dynamics are
included in the bottom panel. The histogram shows a distribu-
tion of latencies of these instantaneous decoders across the
tested images to reach a d′ of 3.



recently observed that the temporal evolution of linearly sepa-
rable object identity information in IT has reliably different dy-
namics for each image over the LAWS of RAD IT decoding
window (see Methods; Figure 1, bottom panel; also refer to
(Kar, Kubilius, Issa, Schmidt, & DiCarlo, 2017)). This sug-
gests that the LaWS of RAD IT model could be put to a much
stronger test, and possibly be falsified, if we obtained data
to test it at image-level resolution. Therefore, in this study we
first tested whether the baseline model (LaWS of RAD IT) pro-
posed by Majaj et al. (2015) could explain primate image-level
behavior. Upon the failure of this model to accurately predict
the image-level behavioral error patterns of the monkeys, we
considered a more biologically plausible linking model: a leaky
integration of appropriately weighted IT responses. Our re-
sults demonstrate that this linking model could not only explain
the prior results, but it also provided more accurate behavioral
predictions for each image as well as better predictions of the
monkeys’ choices on individual trials.

Results
In the present work, we have compared the predictions of mul-
tiple candidate decoding hypotheses that link the primate ven-
tral stream’s neural activity with that of the monkeys’ behavior.
We have used a trial-averaged image-level behavioral metric
(I1), and a trial-by-trial choice correlation metric within a 2-
AFC binary object discrimination paradigm.

Benchmarking the image-level behavioral patterns
To quantify the performance of the monkeys, we used a bat-
tery of 45 interleaved binary object discrimination tasks, simi-
lar to prior work (Rajalingham, Schmidt, & DiCarlo, 2015; Ra-
jalingham et al., 2018). We collected a large number of be-
havioral trials to estimate the image-by-image behavioral per-
formance pattern at relatively high SNR (median split half reli-
ability, ρ̃ = 0.84 and 0.83 in monkey M and monkey N respec-
tively). This pattern is referred to as I1 (see Methods). Monkey
M’s I1 pattern was 70.92% consistent with that of Monkey N,
and we used the I1 pattern and this value as a more stringent
(relative to prior work) minimum target for any model linking IT
population activity to behavioral choice.

Comparison of population decoding hypotheses
Testing LaWS of RAD IT Previous work from Majaj et
al. (2015) has shown that a linking model that takes a
learned weighted sum of IT population activity integrated
between 70 to 170 ms post stimuli onset accurately predicts
human behavioral confusion patterns. Thus, we first tested
whether this baseline linking model could accurately predict
the monkeys’ behavioral I1 pattern. Unlike primate-matched
predictions of object confusion patterns reported earlier,
we observed a ∼4 % divergence between the LaWS of
RAD IT to monkey consistency and monkey-to-monkey I1
consistency (Figure 2A). We reasoned that this inconsistency
between monkey I1 and the predictions of LaWS of RAD IT
might be most prominent for images which have a slower
rate of increase in the instantaneous linearly-decodable

object identity evidence over time. Therefore, we specifically
sub-selected the images where the instantaneous neural
decode accuracy (refer bottom panel of Figure 1) took
longer than 170 ms to reach a threshold d′ of 3 (Figure 2B).

Testing different temporal pooling schemes Based on
the failure of the LaWS of RAD IT model, we reasoned that
downstream neurons might not be limited to integrating IT
responses across a large, fixed temporal window. Instead,
they might be integrating weighted sums of IT responses
(which constitute pieces of evidence supporting different
object choices) at shorter time intervals and over the entire
duration until the choice screen was presented. Therefore,
we tested a more biologically plausible leaky-integration
model of appropriately weighted IT responses (see Meth-
ods). We observed that predictions of this model was not
distinguishable from the monkeys’ behavior (Figure 2A).
In addition, even for the slow evolving images, they were
highly consistent with the monkeys’ I1 pattern (Figure2C).

Testing different spatial pooling schemes In addition to
testing how the dynamics in a randomly selected IT neural
population might be optimally combined by a downstream
neuron, we also specifically tested whether this leaky-
integrator linking model is specific to any sub-region of IT
(posterior, central and anterior) or might benefit with an addi-
tional read-out from area V4. We observed that, behavioral
consistency was maximal when we considered the entire IT
population, instead of V4, PIT, CIT and AIT separately, or a
combination of V4 and IT (90 neurons sub-sampled randomly
from each spatial pooling scheme). Of note, despite the
highest consistency with monkey behavior observed with a
random sub-sampling of IT population, overall accuracy of
object decodes increased as a function of spatial hierarchy,
i.e. V4<PIT<CIT<AIT (90 total neural sites per spatial pool).

Comparison of choice probabilities
The behavioral I1 consistency tested so far is a trial-averaged
metric. Given that we had access to each monkey’s perfor-
mance on every trial, we also asked whether the new and
improved linking model could accurately predict the monkey’s
performance on a trial-by-trial basis. We reasoned that this
would allow us to further test for potential inaccuracies in the
two linking models. Our results show that while the predic-
tions of LaWS of RAD IT is not significantly different from
the chance-level (dashed red line in Figure 3C), the leaky-
integrator model performs significantly better than chance
(permutation test; p<0.05).

Conclusion
Our results demonstrate that the current baseline IT-to-
behavior linking model, a learned weighted sum of IT re-
sponses, integrated across a specific temporal window, is in-
sufficient to predict primate image-by-image behavioral error
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Figure 2: Comparison of different decoding hypotheses on an
image-by-image monkey behavioral performance benchmark
(I1). The dashed line corresponds to the correlation of monkey
M’s I1 with that of monkey N. The shaded region shows the
bootstrap standard deviation of this correlation estimate. A)
We show a comparison of behavioral I1 correlation between
a V1-like model based on VGGNet, V4, and two IT-based de-
coding hypotheses and the pooled-monkeys. B) Scatter plot of
behavioral I1: pooled-monkeys vs LaWS of RAD IT C)Scatter
plot of behavioral I1: pooled-monkeys vs the leaky-integrator
linking model. For B) and C) only images where the instan-
taneous decodes took longer than 170 ms to reach a d’ of 3
were considered.

patterns. Instead, we introduce a new linking model: a leaky-
integration of appropriately weighted IT responses, until the
availability of the choices. Our results demonstrate that this
linking model captures the prior behavioral prediction results
(Majaj et al., 2015), provides more accurate behavioral predic-
tions over individual images, and provides better predictions of
the monkeys’ trial-by-trial behavior on ambiguous images.

Methods
Subjects
We have used two adult male rhesus monkeys (Macaca mu-
latta), referred to as monkey M and monkey N in the text, for si-
multaneous electrophysiology and behavioral data collection.

Visual stimuli
We used a combination of ”naturalistic” images (3D models
of objects rendered as 2D images with varied pose, position,
size etc on an uncorrelated background; refer Majaj et al.,
2015) as well natural images (photographs downloaded from
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Figure 3: Choice correlation comparison between LaWS of
RAD IT and the leaky integration decoding model. A) Ex-
amples of two specific task types included to compute choice
probabilities. Left panel: example of images with two objects.
The choice screen included both the objects. Right panel: ex-
ample phase scrambled image tested with two randomly cho-
sen object choices. B) Demonstration of successful decoding
from neurons on specific trials. We show two example trials
(monkey N), tested with the image shown on the left. Trial 1:
monkey chose ”bird”. The bird-vs-rest classifier and the plane-
vs-rest values at the decoder choice time successfully predicts
the animal’s choice. Trial 2 demonstrates a scenario when for
the same image, the monkey chose ”plane”. C) Comparison
of choice probabilities estimated across different ambiguous
images with LaWS of RAD IT and leaky-integration model. Er-
ror bar denotes bootstrapped s.e.m across images. Data from
the two monkeys were treated separately to generate trial-by-
trial predictions, then pooled together for estimating the mean
(shown in the figure)



http://cocodataset.org.)

Binary object discrimination task
Monkeys fixated a white square dot (0.2◦) for 300 ms to initiate
a trial. The trial started with the presentation of a test image
for 100 ms, followed by a blank gray screen for 100 ms, after
which the choice screen containing a target and a distractor
object was shown. The monkey indicated his final choice by
holding fixation over the selected image.

Image-level behavioral metric: I1

We have used the same one-vs-all image-level behavioral
performance metric (I1) to quantify the performance of mon-
keys and neural based decoding models for the binary object
discrimination tasks. This metric estimates the overall dis-
criminability of each image containing a specific target object
from all other objects (pooling across all 9 possible distrac-
tor choices). For example, given an image of object ’i’, and
all distractor objects ( j 6= i) we first compute the average hit
rate, HitRatei

image. We then compute the false alarm rate for
the object ’i’ (FalseAlarmi) The unbiased behavioral perfor-
mance, per image, was then computed using a sensitivity in-
dex d′,

d′image = z(HitRatei
image)− z(FalseAlarmi), (1)

where z is the inverse of the cumulative Gaussian distribution.
The values of d′ were bounded between -5 and 5.

Large-scale electrophysiology
For each monkey, we implanted three chronic Utah arrays in
IT, on one hemisphere, and a combination of one V4 array
and two IT arrays on the other hemisphere. Recording sites
that did not yield a significant visual drive or high response
reliability were discarded from the analyses. In total, we had
628 valid IT sites and 166 valid V4 sites (n = 2 monkeys).

Neural Population Decoders
To model how downstream neurons might ”read” ventral
stream dynamics to infer object identities, we constructed mul-
tiple candidate linking models (listed below) that convert neu-
ral responses into a prediction of behavioral choice.

LaWS of RAD IT Similar to Majaj et al. (2015), to construct
the learned weighted sums of randomly selected average (70-
170ms post image onset) neuronal responses spatially dis-
tributed over monkey IT (aka LaWS of RAD IT linking model),
we used a support vector machine algorithm with linear ker-
nels. We used L2 regularization (strength of regularization,
optimized for each train-set) and a stochastic gradient descent
solver to estimate 10 (one for each object) one-vs-all classi-
fiers. After training each of these classifiers with a set of 100
training image-responses per object, we generated a class
score (sc) per classifier for all held out test images. We then
converted the class scores into probabilities (Pi

image) by pass-
ing them through a softmax (normalized exponential) function.

Binary task performances were computed as the percent cor-
rect score (Pri, j ) for each pair (i, j) of object choices given
an image.

Pri, j
image =

Pi
image

Pi
image +P j

image

(2)

We then estimated a neural I1 score (derived from Pri, j), fol-
lowing the same procedure as the behavioral metric.

Leaky-Integrated read-outs To construct the leaky integra-
tor model, we first estimated a set of learned weighted sums
(as above) of average IT responses (time window of averag-
ing was chosen to maximize cross-validated behavioral perfor-
mance) to construct 10, one-vs-all classifiers, each belonging
to one of the tested objects. We then implemented a leaky
integration rule of updating each of the classifier outputs con-
tinuously across time according to the following equation,

τ
dC(t)

dt
=−C(t)+ I(t) (3)

, where C is the classifier output at each time point ’t’, and I is
the weighted input from IT at that time point ’t’. The value of τ

was estimated to be 40ms when optimized for behavioral con-
sistency (cross-validated across images). The decision was
estimated by comparing the classifier values (similar to LaWS
of RAD IT) at the time at which the choice screen was shown
(i.e. 100 ms post image offset; as demonstrated in Figure 3B).
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