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Abstract
Subjective reports on mental images may not be con-
sistent with the appearance of seen images (distortion),
and may not be consistent with each other (uncertainty).
We introduce a method for estimating the distortions and
uncertainty associated with mental images from subjec-
tive reports. Application of the method to a small pre-
liminary dataset suggests that distortion and uncertainty
in mental imagery arise from overscaling and undersam-
pling imagined objects.
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Summary
How complex can a mental image be? Introspection suggests
a limit. Imagine a white candle on a tabletop in an otherwise
empty room (MacKisack et al., 2016). Now imagine two can-
dles, eight candles, now sixteen, each a different size. In each
iteration of the mental image, identify the smallest candle. De-
termine if it is more than half the size of the largest candle.
Determine its location. These simple determinations become
increasingly difficult to make as the mental image becomes
more complex. For some level of complexity (twenty can-
dles, a hundred) the determinations become guesses. These
guesses may or may not be consistent across repeated in-
spections of a mental images. If consistent, the guesses might
simply reflect internal biases that distort the way that objects
appear in the real world. If inconsistent, the guesses would in-
dicate objective uncertainty about what we think we are imag-
ining.

Here we describe a method for quantitatively characterizing
the uncertainty and distortions associated with complex men-
tal images. We call the method viral as it is a variational
image reconstruction algorithm. viral can in principle be
applied to brain activity measured during mental imagery;
however, any measure of the uncertainty and distortions as-
sociated with mental images is likely to become conflated with
our own distorted and uncertain understanding of what neu-
ral populations represent. Therefore, we apply the method
here to multiple, independently sampled behavioral reports
about the local content of subjects’ mental images (Figure 1,
(Podgorny & Shepard, 1978)). From these subjective reports
viral infers a posterior distribution over pixelwise segmenta-
tions of the subjects’ mental images (Fig. 3). We show that
inferred segmentations can be used to accurately predict sub-
jective reports. We also use them to measure the size of imag-
ined objects relative to seen ones. Preliminary data indicate
that in simple mental images, imagined object size is nearly

identical to seen object size. However, in complex mental im-
ages the imagined foreground objects are much larger than
seen ones (Fig. 5). In addition to the variational posterior
viral infers two independent measures of uncertainty: a hal-
lucination rate and a forgetting rate (Figure 2). The hallucina-
tion rate quantifies how likely the subjects are to hallucinate
objects that were absent in previous reports, while the forget-
ting rate quantifies how likely subjects are to forget objects
that were present. Our preliminary data indicate that the for-
getting rate increases abruptly with the complexity of mental
images, while the hallucination rate is negligible for even the
most complex mental images (Fig. 6). These preliminary find-
ings suggest that distortions and uncertainty associated with
mental imagery arise from subjects overscaling and under-
sampling the foreground objects near the inspected region of
their mental images. We speculate that these forms of distor-
tion and uncertainty are related to the low spatial resolution of
the high-level visual brain areas that support mental imagery
(Breedlove, Naselaris, & St-Yves, 2017).

Methods
Experiment

We present a preliminary analysis of data from three subjects.
Each subject participated in a ”paint-by-numbers” experiment
(Figure 1, top) that required them to give multiple subjective
reports on the contents of two to four seen or imagined tar-
get images (Figure 1, bottom). Each subjective report was a
count of the number of objects that underlay a polygonal probe
presented on a blank screen during imagery experiments or
overlaid onto the target image during vision experiments. See
Figure 1 for more detail.

Analysis

Data for each subject, target image and type of experiment (vi-
sion or imagery) were analyzed separately. For each dataset
we inferred a variational posterior q(Z) over images Z and two
uncertainty parameters θ+,θ−. See Figure 2 for more detail.
The variational posterior allowed us to measure and compare
the sizes of seen and imagined objects for same subject and
target image. In this preliminary study we present a represen-
tative set of examples (Fig. 5).

Results
Validation of the method

The subjective reports gathered during the experiment are lo-
cal object counts. Object count is an inherently ambiguous
statistic, as it does not specify what objects are locally present,



Figure 1: A paint-by-numbers experiment. (Top) What the
subjects saw during the experiment. Subjects are given sev-
eral minutes to become familiar with a painting (in this ex-
ample ”Still life with candle” by David Ligare) presented on a
computer monitor. The painting disappears, but subjects are
instructed to imagine that it is still present onscreen. Sub-
jects are then presented with a series of contiguous and
non-contiguous semi-transparent polygonal probes and must
count and report with a keypress the number of imagined ob-
jects that underlay each probe. 345 object counts are ob-
tained per image per subject. The painting then reappears
and remains onscreen and the probes are again displayed
(same probes, different order). The subjects repeat the ex-
periment, this time counting the number of seen objects that
underlay each probe. Subjects are instructed to count the
background as a distinct object; no other guidance is pro-
vided about what parts of the target image are to be treated as
distinct objects. (Bottom left) The paintings that the subjects
imagined and inspected (see Acknowledgements for art cred-
its). The paintings vary in complexity. Tags indicate promi-
nent foreground object and ordinal complexity (e.g., candle-
01, peaches-05). Two of the three subjects imagined and in-
spected only the least (candle-01) and the most (peaches-05)
complex paintings. A third subject imagined and inspected all
four. (Bottom right) Subjective report data. Each histogram
tallies the object counts reported for the indicated painting
(combined data from all subjects, imagery and vision exper-
iments)

.

Figure 2: The generative story. The probabilistic graphical
models depicts our assumptions about how visual or men-
tal images Z generate subjective reports rn in response to a
polygonal probe wn. In viral, the image is simply an assign-
ment of a discrete object label to each of the pixels in Z. The
variable π = (π1, . . . ,πK) parameterizes the prior assignment
probabilities for each of the K objects in Z. Whenever a probe
wn is observed by the subject, the subject surveys the K ob-
jects in Z. If an object underlays the probe, the subject ignores
it with probability 1−θ+, which is the forgetting rate. If an ob-
ject does not underlay the probe, the subject counts it anyway
with probability θ−, which is the hallucination rate. The plate
indicates that each of the N = 345 subjective reports obtained
for a visual or mental image are treated as independent of
each other given Z. viral is simply coordinate ascent varia-
tional inference (Blei et al., 2016) applied to this graph. Thus
viral yields an approximate (variational) posterior over visual
or mental images q(Z) ≈ p(Z|r1, . . . ,rN ,w1, . . . ,wN ,θ+,θ−).
We assume that q(Z) factors across pixels of Z. We obtain
point estimates of the forgetting and hallucination rates by
maximizing the variational posterior with respect to θ+,θ−
.

nor how the pixels that depict those objects are distributed
over space. It is therefore important to validate that viral can
recover meaningful information about the location and size of
seen or imagined objects in a target image. Simulations re-
vealed that for sufficiently large numbers of low-noise subjec-
tive reports (n ≥ 1,000, see Fig. 3, second panel from left)
viral learns an approximate posterior distribution q(Z) over
images Z that very accurately delimits the objects in the tar-
get image. That is, if we identify all the pixels in a target image
that belong to a single object, there will be some object label
k such that q(zd = k) ≈ 1 whenever the pixel zd belongs to
that object, and q(z j = k)≈ 0 whenever the pixel z j does not.
Of course, experiments with human subjects yield fewer, nois-
ier datapoints. The distributions corresponding to the ”candle”
object for one subject during vision (Fig. 3, third from left) and
mental imagery (Fig. 3, fourth from left) appear accurate. For
more complex images, however, the correspondence between
distributions and the target images is harder to appreciate by



Figure 3: Reconstructing seen and imagined candles from subjective reports. At left is the target image that the subjects either
saw or imagined during the experiment. Given their subjective reports, viral yields a variational posterior q(Z) over pixelwise
segmentations of the image. This means that for each pixel zd in Z, the variational posterior probability that zd belongs to kth

object is q(zd = k). The three panels to the right of the target image show the probability that each pixel is part of the candle.
Given simulated subjective reports (second from left; hallucination rate = 0.005; forgetting rate = 0.01) the candle is recovered
almost perfectly (the false positives in the periphery result from the inherent ambiguity of the subjective reports). Given reports
from a real subject observing the target image (third from left) or imagining (fourth from left) the spatial distribution still clearly
resembles the candle, although it is more diffuse for the imagined candle.

Figure 4: Validation of viral. Data for each subject was split
into training and testing subsets containing 80% and 20% of
the data, resp. We validated viral for each subject, visual
and mental image by using it to predict subjective reports (i.e.,
discrete object counts) on the test subset. Let qtrain(Z) ≈
p(Z|r1, . . . ,rN ,w1, . . . ,wN ,θ

∗
+,θ

∗
−) be the variational posterior

inferred by observing the training data only, with θ∗+,θ
∗
− our

point estimate of the uncertainty parameters. The predictive
distribution for subjective report ri in response to probe wi in
the testing subset is p(ri|wi) = Eqtrain(Z)[p(ri|wi,Z)]. Above,
we show the percentage of time that the argmax of this pre-
dictive distribution matches the subjective reports in the test-
ing subset. Lines connect the results obtained for the visual
and imagery experiments for the same subject and target im-
age. The dashed line indicates chance for the candle target
image (an upper bound on chance accuracy). For all subjects
and targets viral yields an accurate cross-validated predic-
tive distribution. Perhaps not surprisingly, prediction accuracy
is worse for mental imagery than for vision for most subjects
and target images, and is worst of all for complex mental im-
ages (e.g., peaches-05).

eye. Thus, we used the variational posterior for each target
image to derive a predictive distribution p(rn|wn), where rn

is the subjective report, and wn is the probe presented on
the nth trial. We found that even for complex images (such
as peaches-05) the mode of the predictive distribution gave
an accurate (i.e., greater than chance) prediction of subjec-
tive reports (Fig. 4). These results endow viral with face-
and empirical validity, and licence us to use it as a tool for in-
vestigating subjects’ representations of both seen and mental
images.

Distortions of imagined objects

How do seen and imagined objects diverge as the target im-
age becomes more complex? Here, we investigate a potential
divergence in the size of seen and imagined objects. For a
given object in a target image–call it object k–we calculate
the probability under q(Z) that the seen or mental image con-
tains an object with the exact same set of pixels as object
k. We then dilate object k, enlarging it by a few pixels in all
directions, and again calculate the probability that the seen
or mental image contains an object with the same set of pix-
els as the dilated object k. We iterate these calculations over
a range of sizes for each object, and then plot the probabil-
ities as a function of size for both seen and mental images
(Fig. 5). These plots effectively provide object-size tuning
functions for vision and imagery. In this preliminary dataset,
for simple target images like candle-01 the most likely sizes
of seen and imagined objects were the same, although the
object-size tuning function for the imagined candle was more
broad than the tuning function for the seen candle. For com-
plex target images like cheeseburger-03, the most likely sizes
of the imagined objects were larger than the seen objects ex-
cept for the background (which is treated as just another ob-
ject in this analysis), which was smaller in the mental than the
seen images. These preliminary results suggest that imag-
ined foreground objects are large relative to seen foreground
objects, while imagined backgrounds are relatively small.



Figure 5: The mental cheeseburger effect: distortions of imag-
ined object size. Top) The target image (left) depicts a candle
on a tabletop with a background wall. We used the variational
posterior over seen images qvis(Z) and mental qimg(Z) im-
ages to obtain a distribution over the sizes (in pixels) of the ob-
jects in the target image. The background is explicitly treated
as an object (second from left). For this target image the dis-
tribution over seen (blue) and imagined (orange) background
sizes are identical (up to a scaling constant which has here
been factored out). The same is true for the table-top (third
from left). The most probable sizes of the seen and imagined
candle are also identical, even though the size distribution for
the imagined candle has more entropy. (Bottom) The target
image depicts a cheeseburger, wrapper, fries, and an apple on
a tabletop with a background wall. For this more complex tar-
get image the distributions over the seen and imagined back-
ground (second left), cheeseburger (third from left) and apple
(rightmost) are quite different. The seen background occupies
more space than the imagined background, while the men-
tal cheeseburger and mental apple are larger than their visual
counterparts.

Uncertainty about imagined objects

We obtained point estimates of the hallucination and forget-
ting rates associated with each subject’s seen or imagined
represenation of each target image. The hallucination and
forgetting rates provide distinct measures of subjects’ uncer-
tainty about seen and mental images. Our preliminary results
(Fig. 6) suggest that subjects are far more likely to forget ob-
jects that are present in their mental images than to halluci-
nate them, particularly for complex images. There is much
less of either kind of uncertainty about seen objects.

Conclusions
We have presented viral, a method that uses subjective
reports to infer a distribution over seen and mental images.
Given a small amount of noisy data viral generates accu-
rate cross-validated predictions of subjective reports. Prelimi-
nary results obtained with viral support the intuition that as
mental images become more complex, the objects in them
become distorted and our uncertainty about these objects
increases. These effects bound the complexity of mental
images, effectively reducing their spatial resolution relative
to seen ones. Interestingly, dorsal and parietal visual ar-

Figure 6: People forget. Hallucination (left) and forgetting
(right) rates for all subjects and visual and mental target im-
ages. Hallucination rates are negligible; forgetting rates in-
crease with complexity of the target image and are always
larger for mental imagery than for vision.

eas strongly implicated in the generation of mental images
(Breedlove et al., 2017) and in the representation of object
numerosity (Harvey, Klein, Petridou, & Dumoulin, 2013) main-
tain a low-resolution representation of the visual world. We
speculate that limitations on the complexity of mental images
might be determined by limitations on the spatial resolution of
representations encoded in these visual brain areas.
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