Model-based value in midbrain dopamine signals
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Abstract

Midbrain dopamine activity is thought to represent re-
ward prediction errors (RPEs) used to update the value of
stimuli and/or actions. However, it remains unclear what
sources of value information are available to dopamine
neurons, and to what extent values derived from internal
models inform dopaminergic RPEs. To assess how mid-
brain dopamine activity is influenced by internal models
of task structure, we trained mice in a multi-step proba-
bilistic decision-making task with changing reward con-
tingencies, and performed photometry recordings from
dopamine neurons in the ventral tegmental area (VTA)
and dopamine axons in the nucleus accumbens (NAc)
and dorsomedial striatum (DMS). Our results indicate that
dopamine activity in VTA and NAc terminals is influenced
by value information derived from models of task struc-
ture. By contrast, value information was absent from ac-
tivity in DMS dopamine axons, which instead is strongly
modulated when making choices towards the option con-
tralateral to the recording site.
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Introduction

Changing environments require animals to flexibly adapt their
actions to changes in the world’s contingencies. Such be-
havioural flexibility is thought to be aided by rich internal mod-
els of the rules and statistical relationships between external
events and actions, which allow animals to predict the conse-
quences of action and update these predictions when actual
outcomes differ from the predictions (Tolman, 1948; Daw &
Dayan, 2014; Doll, Duncan, Simon, Shohamy, & Daw, 2015).

However, a simpler, though less flexible, strategy involves
just repeating those actions that were previously rewarded. It
just requires storing - or 'catching’ - the value of actions and
updating this value when it differs from the predicted one using
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a reward prediction error (RPE). This is what underlies model-
free behaviour (Sutton & Barto, 1998).

Classically, activity in dopamine neurons has been reported
to reflect a cached value of actions and to convey a signal con-
sistent for a model-free RPE (Schultz, Dayan, & Montague,
1997; Eshel, Tian, Bukwich, & Uchida, 2016), informing and
guiding behaviour (Steinberg et al., 2013; Hamid et al., 2016).
However, some recent studies have suggested the presence
of higher dimensional signals in dopamine activity (Sadacca,
Jones, & Schoenbaum, 2016; Takahashi et al., 2017; Engel-
hard et al., 2019) which can allow for stimulus-stimulus asso-
ciations to be learned (Sharpe et al., 2017, 2019).

Previous work in humans presented a sequential decision-
making task in which model-free and model-based behaviour
could be dissociated, the 'two-step’ task (Glascher, Daw,
Dayan, & O’Doherty, 2010; Daw, Gershman, Seymour,
Dayan, & Dolan, 2011). Using fMRI, Daw et al. (2011) showed
that activation in the NAc could not be explained by a pure
model-free computation, but instead reflected both model-free
and model-based predictions weighted by their influence on
choice behaviour. However, it is not possible to directly re-
late BOLD signal changes to dopamine and so it remains un-
clear the extent to which dopamine activity is itself directly in-
fluenced by such model-based predictions.

To investigate this issue, here we used a version of this
task adapted for behaving mice (Akam et al., 2017) and em-
ployed fibre photometry to determine whether bulk activity of
genetically-defined midbrain dopamine cells can also reflect
model-based computations. In addition, given the evidence
that the computations supported by dopamine cell firing and
release in terminal regions may differ (Berke, 2018), we com-
pared the activity in VTA dopamine cells to that in axons in
target regions in the NAc and DMS respectively.
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Figure 1: Two-step task. A) Task diagram. B) Example behavioural session. Blue trace shows exponential moving average of
choices. Green horizontal bars show reward probability blocks, indicating by their vertical position whether the reward probability
was higher for the state commonly reached from the left or right choice, or a neutral block. C) Stay probability analysis showing
the probability a choice was repeated as a function of the subsequent state transition (common or rare) and trial outcome
(rewarded or not). D) Lagged logistic regression analysis showing how the history of trial outcomes, state transitions, and their
interaction affects choice as a function of the number of intervening trials. n = 7 animals, 42943 trials.

Methods

We trained mice on a two-step decision task, adapted from
that developed for humans by Daw et al. (2011). The appara-
tus comprised a central initiation port flanked left and right by
‘choice ports’ and above and below by ’second-step’ ports in
which the mice could receive rewards (Fig 1A).

Subjects initiated a trial in the central port then chose be-
tween the left and right ports. Each choice port commonly
(80% of trials) caused one of the second-step ports to light up,
and rarely (20% of trials) caused the other second-step port to
light up. Poking the illuminated second-step port delivered re-
ward with probabilities that changed in blocks. In non-neutral
blocks, one second-step port had 80% reward probability and
the other 20%, while in neutral blocks both seconds-step ports
had 50% reward probability. Mice therefore had to learn to
choose the choice port that commonly led to the second-step
port with high reward probability. Once mice consistently se-
lected the correct choice a block transition was triggered fol-
lowing a random delay and the second step reward contingen-
cies changed.

We recorded bulk calcium activity in midbrain dopamine
neurons and their projections to NAc and DMS using fibre
photometry. DAT-cre mice were injected bilaterally in VTA with
AAV viruses expressing GCaMP6f and TdTomato. Three optic
fibres were implanted in each mouse targeting VTA, NAc and
DMS.
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Results
Behaviour

Subjects learned to track which option was currently best, per-
forming ~400 trials and >8 reversal blocks in each session
(Fig 1B).

Choice behaviour was consistent with a model-based re-
inforcement learning strategy (Daw et al., 2011), with trial
outcome (rewarded or not) and state transition (common or
rare) interacting to determine subsequent choice; i.e. sub-
jects tended to repeat choices following rewarded common
transitions and non-rewarded rare transitions (Fig 1C). Logis-
tic regression using the trial history to predict choice showed
a strong effect of both the transition-outcome interaction and
state transition on choices over multiple subsequent trials, but
minimal direct influence of the trial outcome (Fig 1D).

Dopamine activity

As expected, calcium activity in VTA and NAc increased at the
time of reward, and decreased on reward omission (Fig. 2A).
Surprisingly, in DMS the opposite modulation was observed,
with lower calcium activity following reward than reward omis-
sion.

Dopamine activity in each region was not only modulated
at the time of reward delivery, but presented a rich pattern of
activity across the different trial stages. In order to disentan-
gle what behavioural variables were driving dopamine activity
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Figure 2: Dopamine photometry. A) Dopamine response on rewarded and non-rewarded trials in VTA, NAc and DMS showing
the mean and cross subject standard error. Trials were time-warped to align the initiation poke (l), choice poke (C), second-step
poke (SS) and outcome delivery (O). B) Predictor weights in a linear regression analysis predicting trial by trial dopamine activity.
Predictors are plotted on separate axes for clarity, but a single regression analysis including all predictors was run for each
region. n = 7 animals, VTA:16158 trials; NAc: 15549 trials; DMS: 11236 trials.

at different time points, we used a linear regression analysis
predicting trial by trial calcium activity as:

y(i,t) =Y Bp(1)Xp (i) + c(t) + (i) (1)
p

where y(i,7) is the calcium activity on trial i at time-point ,
B,(r) is the weight for predictor p at time-point 7, X, (i) is
the value of predictor p on trial i, c(z) is the intercept at
time-point ¢, and €(i,t) is the residual unexplained variance.
Fig. 2B shows the predictor weights f3,,(¢) obtained by fitting
the model to activity in each region.

Consistent with the average traces, reward on the cur-
rent trial strongly increased dopamine activity in VTA and
NAc when reward information became available, with a faster
timescale in NAc than VTA. Reward had a negative and slower
influence on calcium activity in DMS terminals.

We next asked how the previous trial’'s outcome (rewarded

or not) affected dopamine activity as a function of whether the
second-step reached on the current trial was the same or dif-
ferent to the previous trial. When the second-step state was
the same, reward on the previous trial increased dopamine ac-
tivity in VTA and NAc at the time when the second-step state
was revealed, consistent with an RPE driven by the value of
the second-step state. In NAc but not VTA this influence re-
versed at outcome time, consistent with the second-step state
value’s influence on the outcome-time RPE. However, cru-
cially, if the second-step state was different from the previ-
ous trial, the previous reward had the opposite effect, reducing
dopamine activity when the second step state was revealed.
This is consistent with subjects understanding the negative
correlation between the reward probabilities and inferring that
reward in one second-step state reduces the likelihood that
the other state has high reward probability, i.e. that mice were
inferring a single latent variable about the state of the reward
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probabilities rather than independent values for each second-
step state. No modulation by previous reward was observed
in DMS.

We also constructed predictors which coded the direction
in which a model-based and a model-free value update on the
previous trial would affect the value of the action chosen on
the current trial. Dopamine activity in VTA, though less clearly
in NAc, was increased at choice time when the model-based
value update was positive, consistent with model-based ac-
tion value estimates contributing to an RPE once the choice is
made. The direction of model-free action value updates also
influenced VTA activity weakly at the same time-point. These
action value update predictor loadings in NAc showed a com-
plex temporal pattern which it is unclear how to interpret. Nei-
ther of these predictors explained activity in DMS terminals.

Finally, we looked at how direction of movement influenced
population activity during the trial. Activity in all three areas
showed some modulation by whether the choice required an
ipsi- or contralateral movement relative to the recording site.
This was particularly striking in DMS terminals, which showed
a strong increase in activity between trial initiation and choice
when mice chose the contralateral poke, suggesting that ac-
tivity in DMS encoded initial action choice in a lateralised way,
independently of action or state values.

Conclusion

We have presented data from dopamine population record-
ings during a multi-step probabilistic reversal learning task in
mice. Mice were able to track the best option across rever-
sals, exhibiting choice behaviour consistent with model-based
reinforcement learning. Photometry recordings from midbrain
dopamine neurons and projections to NAc showed evidence
of value information which respected the task structure, in-
cluding the anti-correlated nature of the reward probabilities,
and transition structure linking actions and states. By contrast,
dopamine in DMS was primarily influenced by the direction
of the animals’ initial chosen action. Together, this demon-
strates that dopamine contains multiple representations be-
yond model-free RPEs.
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