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Abstract
Cognitive processes all require time, as they universally
depend on information transmission between brain re-
gions limited by physical and biological constraints. The
time required for behavior also exhibits surprisingly law-
ful variation with task demands, success and failure,
stimulus and response complexity, familiarity, practice
and learning. Here we consider these regularities as con-
sequences of constraints on information transmission,
which we show provide rational predictions for timing ef-
fects across a surprising range of cognitive domains. We
use a simple model for neural information transmission
based on a variable-length rate coding model built with
Poisson processes, Bayesian inference, and an entropy-
based decision threshold that simultaneously replicates
a broad array of well-known reaction-time effects. By pro-
viding a principled connection between a high-level nor-
mative decision framework with time-dependent neural
rate codes, we integrate several disjoint ideas in cogni-
tive science through translating plausible constraints into
information theoretic terms.
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Introduction
Whatever the task at hand, neurons performing task-related
computations must infer, in a continuous-time and streaming
manner, which ‘messages’ are being transmitted from other
brain regions (Rieke et al., 1999). This inference process is
noisy, imperfect, and time-dependent, and enforces a bound
on behavioral reaction time to stimuli. Despite the complex
and chaotic nature of neural coding, simple changes in experi-
mental conditions have consistent and reliable effects on reac-
tion times, described by ‘laws’ like the Hick-Hyman law (Hick,
1952; Hyman, 1953) and the Power Law of Practice (Newell
& Rosenbloom, 1981). In this paper, we consider information
transmission from the environment, through the brain, to be-
havior as an information channel using a neural rate code. By
constraining both the channel encoding and each transmitted
signal to be optimally inferred under normative assumptions,
we can construct a message-transmission system that repli-
cates these regular phenomena, and produces human-like re-
sponse time distributions. Our information-theoretic approach
affords a principled way to connect levels of analysis (Marr,
1982) by integrating energetic resource availability, message

Figure 1: A codebook converts symbols A, B, etc. from a sym-
bol alphabet into configurations of firing rates across Poisson
processes n1,n2, .... In this simple model, the codebook as-
signs a signal rate λS to a single Poisson process for a given
symbol. Each Poisson process also emits spikes at a noise
rate λN . As Poisson process rates are additive, this results in
a total emission rate of λN +λS for the ‘activated’ process.

encoding and decoding schemes, and task performance char-
acteristics into a single framework.

In what follows, we present a continuous-time variable
length coding mechanism, built using entropy and inference,
that adheres to the principles of information theory while pro-
viding normative predictions of signal transmission time and
accuracy. We emphasize that the continuous-time nature of
the code means that signals are not discretized. Because of
this, we are able to transmit messages such that transmission
time is linearly related to message surprisal, replicating the
Hick-Hyman law. By presenting such a code, we show that
appropriate information-theoretic concepts can be applied to
the study of neural information transmission.

Implementation

We model information transmission by having a sender en-
code a message into a configuration of Poisson process firing
rates, and a receiver watch the generated spikes until they are
confident about the configuration of underlying rates, and thus
about the content of the encoded message.
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Figure 2: (A) Spikes are randomly emitted by each Poisson
process as a function of time. The lower-most Poisson pro-
cess is firing at a higher λN + λS rate, while the others are
firing at rate λN . (B) The receiver observes the spikes and
infers which process is firing at rate λN + λS. The initial en-
tropy is 2 bits, indicating a weak belief in equal probabilities
for each of the 4 possible signals. The receiver’s remaining
entropy changes as the processes are observed and the pos-
terior probability of each signal is calculated.

In more detail, the transmission mechanism consists of an
encoder, a transmitter, a receiver, and a codebook. The trans-
mitter is an array of Poisson processes, each continuously
producing points or ‘spikes’ independently at a given noise
rate λN . This can be viewed as a basic model of a neural rate
code, as neural spikes trains are often modeled as Poisson
processes (Rieke et al., 1999). The symbols to be communi-
cated are taken from an alphabet of discrete symbols A . The
codebook describes a mapping between each symbol and a
configuration of Poisson rates, and the mapping from a given
symbol to rate configuration is carried out by the encoder. For
the sake of expositional simplicity, we restrict the codebook
to increasing the rate for a single Poisson process from the
noise rate λN to a signal rate λN +λS, as shown in Figure 1.
The neural analogue is that each Poisson process is ‘tuned’
to ‘prefer’ a particular symbol in a 1-hot manner, resulting in a
sparse code.

The receiver observes the sequence of spikes emitting
from each Poisson process and continuously attempts to infer
which rate configuration is producing the spikes it observes,
and thereby which symbol is being transmitted. We assume,
again for simplicity and consistent with common information-
theoretic analysis, that the receiver knows the values of both
λN and λS. In standard binary or Gaussian channels, trans-
mission is a discrete vector of amplitudes that takes a fixed

Figure 3: (A) The expected value of the receiver’s entropy re-
garding four possible messages decreases as spikes are ob-
served. Increasing the signal power λS changes the informa-
tion transmission rate. (B) Response time distributions vary
as a function of signal power λS, and in each case are well-fit
by a log-normal distribution.

time to transmit. Because of this, practitioners typically speak
in terms of transmitting bits-per-signal, or bits-per-second
(which are a constant multiple of each other). In our case,
the receiver accumulates information about each transmission
gradually, over time. In effect, observing for a longer period of
time adds redundancy to the signal.

As observations continue, the receiver calculates and con-
tinuously updates a posterior probability distribution over pos-
sible messages, and stops decoding when the entropy of
the posterior reaches a pre-specified stopping threshold. Let
transmitted symbols be treated as realizations of a random
variable X . The receiver begins each transmission at time
t = 0 with an initial uncertainty HQ(X) regarding the sym-
bol being transmitted, reflecting its prior distribution Q(X) of
the possible codewords. As time passes and observations
Yt = {y1, · · · ,yt} are made, the receiver uses Bayesian in-
ference to update the prior to obtain a posterior distribution
Qt(X |Yt) over messages according to Bayes rule, which yields
an updated posterior entropy HQt (X |Yt). The posterior en-
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tropy decreases non-linearly with time and reflects the degree
of confidence that a message has been correctly received.
Transmission stops when HQt (X |Yt) reaches a threshold. Fig-
ure 2 shows the change in posterior entropy over time for an
example transmission.

Variable length transmissions

In the coding scheme introduced here, messages are
variable-length: transmissions of messages with higher sur-
prisal takes more time than messages with low surprisal,
where surprisal is calculated using the prior probability dis-
tribution Q(X) of the receiver. Recall that the surprisal h(x) of
a message x drawn from a distribution P(X) is the logarithm
of the inverse probability of the message, h(x) = log2

1
P(X=x) .

In ‘entropy codes,’ codeword length (and thus transmission
time of each codeword) is roughly proportional to the surprisal
of the encoded symbol in the absence of noise. When sym-
bols are independently drawn according to a categorical prob-
ability distribution, this can manifest in two ways. In the first,
increasing the number of possible symbols increases the sur-
prisal of each individual symbol, and consequently the length
of the code needed to encode its value. In the second, sym-
bols drawn from a categorical distribution with unequal prob-
abilities will have different surprisal values: more frequently
transmitted messages will have lower surprisal and shorter
codes than less frequent messages. We performed simula-
tions to explore these scenarios in turn using our transmission
model.

First, we varied codebook sizes and recorded transmission
times using a fixed entropy threshold and a uniform source
distribution. The nonzero entropy threshold occasionally re-
sults in transmission errors, as we see in human subjects. In-
formation transmitted is thus less than the surprisal of each
individual message, on average. We computed actual infor-
mation transmitted by calculating the mutual information be-
tween transmitted symbols and received symbols, for each
codebook size. The results are shown in Figure 4 and are
a close qualitative match for the Hick-Hyman observations of
human response times reported by Hick (1952) and Hyman
(1953).

We next transmitted messages drawn from a non-uniform
distribution P(X) and measured transmission time for each
message. For each transmission, we measured the informa-
tion transmitted by comparing the receiver’s prior probability
distribution Q(X) (which equals the source distribution P(X),
an assumption we relax below) with their posterior distribution
Q(X |Y ) at decision time. We measured the difference in these
distributions using the Kullback–Leibler divergence between
the two distributions, DKL(Q(X |Y )||Q(X)). The change be-
tween the receiver’s prior and posterior distributions is equiv-
alent to the decrease in the receiver’s subjective uncertainty
about which message is being transmitted. From the point of
view of the receiver, this is equivalent to the amount of infor-
mation transmitted, in bits. Figure 5 shows a linear relation-
ship between message surprisal and transmission time, again

Figure 4: Mean transmission time increases logarithmically
with codebook size and linearly with information transmitted,
mirroring the Hick-Hyman law. Points represent mean trans-
mission times and shaded regions represent the 50% and
90% high-density interval of the transmission time distribution.
In each case, messages were transmitted according to a dis-
crete uniform distribution P(X) over messages, and the re-
ceiver maintained a uniform prior distribution Q(X) = P(X) of
the same dimensionality. For each transmission, an entropy
threshold of 0.3 bits was used, with λS = 4 and λN = 10.

Figure 5: Mean transmission time increases linearly with ac-
tual information transmitted, echoing similar findings in hu-
mans by Hyman (1953). The quantity of information transmit-
ted is calculated as the the KL-divergence between the prior
distribution Q(X) and the posterior distribution P(X |Y ) at de-
cision time. Messages were drawn from a non-uniform source
distribution P(X). The receiver is assumed to know this
source distribution and maintains a prior distribution Q(X) =
P(X). For each transmission, an entropy threshold of 0.3 bits
was used, with λS = 4 and λN = 10.

qualitatively matching Hyman’s reported results from human
subjects.
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Learning to efficiently transmit

As with source-coding systems, expected message transmis-
sion times are faster when more frequently transmitted mes-
sages are transmitted in less time than less frequently trans-
mitted messages. In the our system, this is implemented by
tailoring the receiver’s prior distribution Q to match, as closely
as possible, the source distribution P. This reveals an epis-
temic problem from the perspective of the receiver, which has
no a priori knowledge of the source distribution: the prior must
be learned and updated by observing message transmissions.
The work of Hick and Hyman has been legitimately criticized
for omitting this discussion (Laming, 2010).

Suppose we allow a receiver with an incorrect uniform prior
message distribution Qinit to update its distribution to Qobs in
a Bayesian manner each time a message is received, so that
the subsequent message transmission starts with the updated
prior. As the receiver observes which messages are transmit-
ted and at what relative frequency, Qobs will become an ever-
closer approximation to P, shrinking both DKL(P||Qobs) and
the expected transmission times.

As observations accumulate, the rate at which response
times decrease as Q approaches P mirrors the Power Law
of Learning (Newell & Rosenbloom, 1981). The Power Law of
Learning is a ubiquitous finding that task response times have
a power-law relationship with the number of practice episodes,
when averaged across many subjects. We constructed a cat-
egorical source distribution P with k = 16 categories, but with
most of the probability mass in two categories. We initialized
Qinit to have a Dirichlet prior with concentration parameters 2,
representing a weak prior belief that the source distribution is
uniform. We simulated N message transmissions, for N = 2 to
N = 1024, taken evenly in log space. For each value of N, we
averaged the results across 1,000 simulated observers, result-
ing in an expected posterior distribution Qobs after N observa-
tions. For each Qobs we then simulated more 2,000 message
transmissions, with messages drawn with frequency defined
by P, and calculated the transmission time for each. As illus-
trated in Figure 6, the relationship between observations N
and transmission time is linear in log-log space, matching the
Power Law of Learning.

Conclusion

We have applied the principles of information theory to a sim-
ple rate-coding model of neural information transmission. We
showed that the Hick-Hyman Law, the Power Law of Prac-
tice, and the lognormal response time distributions are all pro-
duced through placing normative bounds on the inference of
source distributions and the content of individual signals.
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