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Abstract
We analyze the close link between perception and mem-
ory. Our main hypothesis is that some of the main mem-
ory systems of the human brain, e.g., the episodic mem-
ory, the semantic memory, and to some degree also the
working memory, are by-products of the need for humans
to gradually extract more meaningful and more complex
information from sensory inputs. Our model is an exten-
sion to the tensor memory approach. The key notions
are index representations for entities, concepts, relation-
ships and time instances, embeddings associated with
the indices, a working memory layer, and a sensory mem-
ory layer. Perception and memory are realized as an in-
terplay between the different layers. Our model is both
competitive to other technical solutions and, as we argue,
biologically plausible. Our experiments demonstrate that
semantic memory can evolve from perception as a distin-
guishable functional module.

Introduction
Perception has evolved from simple stimulus-reaction in lower
animals to the ability of a deep analysis of sensory input in
humans. An important capability, for example, is the compar-
ison to previous experiences: if a certain event is very similar
to a past event, and that past event triggered a certain ac-
tion, it makes sense that the current event should trigger the
same action. Another important function is the identification of
concepts and their relationships: “a child, located on a swing”
will trigger very different actions than “a child, running in front
of a car”. Clearly a more refined perception is tightly linked
to an improved understanding of the world, its schema, ob-
jects and their relationships, or as Goethe put it: “you only see
what you know”. In this paper we argue that episodic memory,
i.e., the faculty to recall and restore past events, and semantic
memory, i.e., knowledge about the world, are by-products of
an evolving perceptual system which developed to deal with
an increasingly complex world: our hypothesis is that episodic
memory and semantic memory did not initially evolve as sepa-
rate memory functions but instead repurposed faculties devel-
oped in perception for a semantic decoding of sensor stimuli.
Furthermore, working memory might have evolved out of the
need to store information to improve perceptual decoding.

The work in this paper is based on the tensor memory ap-
proach (Tresp et al., 2015; Tresp & Ma, 2016) which is an
extension to the hippocampal memory indexing theory (Teyler
& DiScenna, 1986). The key concepts of that approach are
sparse index representations for entities, relationships and
time instances. Each index has an associated distributed em-
bedding, and memory and perception are based on an inter-

play between both. Perception, episodic memory and seman-
tic memory might evoke sub-symbolic associations, but they
are also declarative, indicated by the abilities of humans to re-
port verbally about perception and memory contents. The se-
mantic decoding in the tensor memory has exactly that declar-
ative nature!

Here we significantly modify and extend that model. In the
tensor memory model, the calculations of conditional probabil-
ities required for decoding require marginalization operations
which are costly and might be difficult to realize with biological
wetware. Also, several indices and their embeddings needed
to be active at the same time, which might not be biologi-
cally plausible (binding problem) and the approach required
units to implement multiplication. Here, we propose a layered
approach, where the sensory information is processed by a
working memory layer, a representation layer and an index
layer. The operations can be described as a single recurrent
neural network where semantic memory evolves as an identi-
fiable functional module.

The remaining parts of the paper are organized as follows.
After we provide a brief review of the tensor memory approach
in the next section, we present our model and mathematical
operations performed by the model. Then follows a discussion
on the neural substrate and a presentation of experimental
results. The last section contains our conclusions.

Tensor Memories

Triple-based graphs have evolved into major data structures
for representing semantic information. Concrete examples
are knowledge graphs which store world facts (e.g., (Munich,
partOf, Bavaria)) and scene graphs for describing image con-
tent (e.g., in the actual image, (Dog, bites, Person)).1 The
graphs are based on (s, p, o)-triples where the subject s and
the object o are entities represented as the nodes in the graph,
and where a directed link, labeled by p, represents a pred-
icate. In the tensor memory approach, a graph was repre-
sented as a 3-way tensor, which was approximated by tensor
factorization involving latent embeddings as vectors of real
numbers: aes is the embedding associated with the subject,
aeo is the embedding associated with the object, ap is the em-
bedding associated with the predicate, and at is the embed-
ding associated with the time instance, or image, t. Note that
an entity has a unique representation, independent of its role
as a subject or object. The factorized models deliver estimates
for the probability that a triple is true at time t, given image in-
formation at time t, i.e., P(s, p,o|t), and P(s, p,o), which is the

1The nodes in the graph represent entities. In a knowledge graph,
the nodes are labeled by identifiers (Jack ), in scene graphs by con-
cept labels (Person).
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Figure 1: Our model architecture consists of four layers. Ex-
tracted representations from images are represented at the
bottom layer (sensory memory, g) which is connected to the
representation layer f. The top layer e contains the indices for
concepts, predicates, and time instances. The working mem-
ory h is an integration layer and g is the sensory layer.

prior probability for observing the triples (s, p,o).2

The tensor memory model has some technical shortcom-
ings when used in perception. For example, the semantic
memory was derived from a marginalization over time, which
is a computationally expensive operation that might not easily
be implemented in biological wetware and can only be exe-
cuted efficiently for some models (Tresp & Ma, 2016). Other
problems are the polynomial scaling with the rank of the tensor
model and the need for units that can perform multiplications.

A Model for Perception and Memory

A Layered Architecture: Figure 1 shows our model archi-
tecture. As in the tensor memory model, we assume an index
representation layer e for entities, predicates and time in-
stances, which is shown at the top of the figure. The indices
can activate the representation layer f via connection ma-
trix AT

c for the concepts, AT
p for the predicates, and AT

epi for
time instances. The embedding of concept ei is the vector aei ,
which is the transpose of the i-th row of Ac. Similar for the
predicates and the time instances. When index ei is active
and all other indices are inactive, then f = ai. We introduce
the working memory layer h. This layer has some internal
dynamics and receives inputs from the representation layer f.
In the following, we assume that we want to retrieve two con-
cepts and their relationships at time, or image, t. Let t be the
time constant of perception (on the order of hundreds of mil-
liseconds). The micro time-step τ is the time constant for the
decoding of the sensory input (τ << 100ms). We now discuss
the individual processing steps.

2More explicitly, P(s, p,o|t) stands for the probability of observ-
ing a subject entity and an object entity at time t, where the subject
belongs to concept s, the object belongs to concept o, and both are
related by predicate p.

Decoding the Subject: Consider that g(t) is the embedding
of the sensory input at time t. The activations of the working
memory become, with hin(t) = 0,

h(t) = sig(hin(t)+V Dg(t)).

The activations in the representation layer and the index layer
are calculated as

f(t) = Dg(t)+Wh(t) and e(t) = sig(Acf(t)).

Thus the activations of the indices are determined by the inner
product of their embeddings with the activation of the repre-
sentation layer. In training, e(t) is set to be a one-hot vector
indicating the index of the true subject. In testing, we proceed
with e(t).3 Finally, we set,

f(t)← AT
c e(t) = aes and hin(t + τ) = Bh(t)+V aes .

In training, f(t) is now set to be the embedding of the true
subject es, and in testing, it is an average, weighted by e(t);
hin(t +τ) is the input activation for the working memory in the
next time step. All weight matrices D,V,W,B and the matrices
containing the embeddings Ac,Ap,Aepi are learned in training.
Note that here, and in the following, there is a direct short
cut, not involving the potentially slower working memory, in
the form of e(t) = sig(AcDg(t)).

Decoding the Object: The object decoding is identical to
the subject decoding, if we replace t with t +τ, t +τ by t +2τ,
and aes by aeo .

Decoding the Predicate: The predicate decoding is identi-
cal to the subject decoding, if we replace t with t + 2τ, t + τ

by t + 3τ, aes by ap, and Ac by Ap. Note that the decoding
is asymmetrical and can distinguish between (Dog, bites, Per-
son) and (Person, bites, Dog). For a given image, the de-
coding can generate a large number of triples, which, in their
entirety, present a visual input as an ensemble scene graph.

Discussion
Sensory Memory Layer: g is the visual sensory memory,
maintaining visual information to be processed and analyzed.
g represents properties of the respective focus of attention (in
technical systems, these would be the bounding boxes). We
assume that sensor processing involves an attention mech-
anism, such that g(t) represents the subject bounding box,
g(t + τ) represents the object bounding box, and g(t + 2τ)
represents the predicate bounding box. The latter includes
the two previous bounding boxes and some surrounding im-
age area. In the brain, it is assumed that the sensory memory
layer involves the visuospatial sketchpad of the working mem-
ory, associated with the parietal-occipital region.

3In testing we could perform a sampling from a normalized ver-
sion of e(t); but this sampling introduces noise and would have to
be repeated many times; proceeding with e(t) can be considered an
approximation to the sampling.
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Index Layer: The index layer e consists of indices for con-
cepts, like Cat, and predicates like nextTo, and time instances.
Generally it is assumed that indices are formed in the hip-
pocampus and their long-term representation might involve
the pole of the temporal lobe. An index might be realized by
a small number of interacting neurons (Teyler & DiScenna,
1986; Quiroga, 2012). Over the path e→ f→ g, an index can
also excite a sensory impression. The indices (including the
indices for time instances) have a relational memory function
in the sense that they bind together different dimensions in the
representation layer.

Representation Layer: The representation layer is impor-
tant for the information path from g to e and it interacts with
the working memory h. If index ei is activated, the activation
of layer f reflects ai. Thus, whereas the sensory layer is pri-
marily visually grounded, the representation layer is primarily
concept grounded. If the concept “cat” is active in the index
layer, the representation layer would contain abstract repre-
sentations of the concept cat, without a reference to the actual
cat in the sensory input. In the brain, these representations
might involve the parietal lobe and the posterior region of the
temporal lobe.

Working Memory Layer: The working memory layer inte-
grates information from visual input and the decoding pro-
cess (subject, predicate, object), and eventually the complete
scene with its visual representations and decoded concepts
and predicates. Working memory might have initially been
developed biologically to support a more complex scene un-
derstanding and event processing. Its integrative functions
are typically associated with the prefrontal cortex (PFC) in the
frontal lobe and its interaction with the representation layer
might reflect the event-specific relational memory functions in
perception and memory recall. The PFC is profusely and re-
ciprocally connected with the hippocampus, and cortices of
association of the temporal and parietal lobes. Note that this
layer is the “intelligence on top”, since a simpler decoding
g→ f→ e would not involve the working memory layer.

Semantic Decoding, Schema, and Semantic Memory:
Whereas the restoration of an episodic memory trace is mostly
sub-symbolic and might lead to an autonoetic experience,
our model also contains a semantic decoding for percep-
tion and episodic memory. It produces a set of triples on a
symbolic level involving indices for concepts and predicates
and their embeddings, which are encoded as connection pat-
terns (Tresp et al., 2015). In the cognitive sciences, represen-
tations for concepts form what is called a schema, which aids
in the interpretation of events. Studies have shown that indi-
viduals can analyze perceptual information significantly more
easily when this information is related to an acquired schema.
According to our model, an improvement in the schema would
go hand in hand with a refined perception. (Moscovitch et al.,
2016) defines a schema as “adaptable associative networks of
knowledge extracted over multiple similar experiences”, which
is in agreement with our model. The same paper states that

“memories for recent events draw on interactions between
schemas, semantics, and perceptual aspects of an experi-
ence, mediated in part by different regions in the anterior and
posterior neocortex”, which we would interpret as the multi-
level processing in our model.

Early in evolution, it was important for individuals to rec-
ognize particular classes of objects (e.g., “tigers”, “snakes”);
object recognition then became the basis for a more mean-
ingful information extraction in form of semantic triples. Our
model requires a storage layer which maintains information
about already extracted concepts; as proposed already, this
storage might have been the initial motivation for the brain to
evolutionary develop a working memory in the PFC.

Another by-product in our approach is semantic memory.
In our model, semantic memory uses the same layered struc-
ture, ignoring the sensory input, and models the prior proba-
bility for observing a triple. Thus semantic memory involves
only the top three layers and is independent of the context
provided by the sensory input. Assume the index for Cat
is activated in the index layer by some internal or external
cue. Then, without any perceptual input, the decoding pro-
cess might generate, with some probability, that (Cat, sitsOn,
Stove). Mathematically, the semantic memory here models
P(p = sitsOn,o = Stove|s = Cat). In our model, the se-
mantic memory is implemented as the connection pattern be-
tween the index layer and the representation layer. In the
brain, semantic memory involves the anterior temporal cor-
tex (Moscovitch et al., 2016).

A scene graph describes entities and their relationships. So
far we focused on the concept attributes of the entities: (Dog,
bites, Person) and not identifier attributes as in (Sparky, bites,
Jack). Humans have an enormous capacity to represent a
large number of entities; but consider a less complex mammal
which needs to have only knowledge about a smaller number
of specific entities, such as the leader hierarchy in a pack.
We propose that, for significant entities, indices are formed
as well. So in the previous example, there would be indices
for Jack and Sparky, in addition to the indices for Person and
Dog.

Our model does not explicitly consider properties like large,
red, threatening. These can be treated as concepts in con-
junction with the predicate hasAttribute where the visual infor-
mation for subject and object originate from an identical image
region. Also the representations in the sensory layer and in
the representation layer might convey attribute information.

Episodic Memory: Most researchers consider temporal
coding to be a core function of the hippocampus and not a de-
rived property (Teyler & DiScenna, 1986; Eichenbaum, 2014;
Moscovitch et al., 2016). Our model agrees with this view and
we assume that an index for a time instance is formed for a
sensory input that is associated with an emotion or with nov-
elty (Figure 1). In its simplest form, the t-th row of the matrix
Aepi copies f. Biologically, time indices might involve a small
network of interacting neurons (Quiroga, 2012); together with
their connection patterns (in our model Aepi) they form mem-
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ory traces or engrams. It is assumed that the original purpose
of this index was to be able to compare the current event to
previously encountered events (familiarity) and their associ-
ated actions, supporting the individual in decision making. In
the course of evolution, this decision oriented process was re-
purposed and various cues were able to activate the indices
which, using bidirectional connections, are then able to restore
a past memory as a personal experience. Subsequently, this
function became more elaborate and enabled future-oriented
mental time travel to evaluate future consequences of actions.
Humans became able to mentally place themselves in the
past, in the future, or in counterfactual situations, a process
called autonoetic consciousness. Episodic memory traces
can also be used to train implicit memories in perceptual
and procedural memories or even train complex action pat-
terns (Kumaran, Hassabis, & McClelland, 2016). An episodic
memory experience is an active process that involves details
of the event and its location (Moscovitch et al., 2016). Some-
times the reconstruction is considered a Bayesian process of
reconstructing the past as accurately as possible based on the
engram information. According to the standard consolidation
theory, indices are consolidated in neocortex, whereas the
multiple trace theory proposes that the hippocampal represen-
tation maintains its function over long periods and a memory
trace is only partially consolidated in neocortex (Moscovitch et
al., 2016). In our model, consolidation would involve a reim-
plementation of an index and its connection pattern.

Experiments

We use the Stanford Visual Relationship data set, which is
the basis for many works on scene analysis, e.g., (Baier, Ma,
& Tresp, 2017). We used 100 concepts and 70 predicates
with 4000 images for training and 1000 for testing. The results
of our model are comparable to highly optimized models in
other works (Table 1). We also see that the working memory
is essential for obtaining good results. The dimensions for the
layers are g/4096, f/4096, h/500. For comparison, we report
results from (Baier et al., 2017).

We also did experiments where we removed the visual in-
puts and our model performed as a semantic memory. The ta-
ble shows that the performance of this derived model is worse
than a model optimized on semantic data (Baier) but much
better than random. The table also shows that by starting with
a perception model (trained on 10 epochs) and then adding (1
or 9) epochs, where we only use the semantic triples without
perceptual input, significantly improves the extracted semantic
model with only a small performance drop in perception.

Conclusion

We have presented a mathematical model for perception,
episodic memory and semantic memory, and related it to cog-
nitive models of the human brain. Our main hypothesis is that
episodic memory, semantic memory, and to some degree also
working memory, are by-products of the need for humans to
extract more meaningful and more complex information from

Table 1: ph stands for phrase detection and pr stands for pred-
icate detection. In phrase detection, a triple with its corre-
sponding bounding boxes is considered a success, if both the
triple and the bounding boxes are correctly detected. In pred-
icate detection, subject concept and object concept are given
and the task is to predict the predicate (Baier et al., 2017). For
z-s-ph/z-s-ph (zero shot), we only evaluate the test set perfor-
mance on triples that did not occur in training. The first row
(Model) shows results for our model. The fourth row (Baier)
shows the results from literature. Dir are results where we re-
moved the working memory. Our model gives better results
for the zero-shot experiments. The last two columns report re-
call results for only the semantic memory. The first row shows
results where the semantic memory was extracted from our
perceptual model. The result (82.46 and 53.53) are worse
than the result for Baier, where the latter was trained directly
on the triple data. S1 and S9 show results where we added
1 and 9 epochs of pure semantic training to the perception
model. We see that the semantic model improves significantly
with almost no degradation on perception.

Method ph z-s-ph pr z-s-pr @10 @1

Model 23.45 10.95 93.32 78.79 82.46 53.53
S1 23.32 10.44 93.17 80.07 93.46 67.55
S9 22.61 9.24 92.77 79.47 94.77 68.68
Baier 25.11 7.96 93.81 76.05 95.86 70.50
Dir 11.13 7.87 77.19 65.61 - -
Rand 0.01 0.00 18.53 16.51 0.08 0.01

sensory inputs. We could show experimentally that semantic
memory can evolve as a by-product of perception. The se-
mantic memory represents prior probabilities, which might be
an interesting basis for a Bayesian brain interpretation. We
propose that the model we presented is in a sense minimalist,
containing necessary perceptual components.
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