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Abstract
Continuously adjusting behavior in changing environ-
ments is a crucial skill for intelligent creatures, but we
know little about how this ability develops in humans.
Here, we investigate this question in a large sample us-
ing behavioral analyses and computational modeling. We
assessed over 200 participants (ages 8-30) on a prob-
abilistic, volatile reinforcement learning task, and mea-
sured pubertal development status and salivary testos-
terone. We used three classes of models to analyze be-
havior on the task: fixed strategies, incremental rein-
forcement learning, and Bayesian inference. All model
classes provided converging evidence for a decrease in
decision noise or exploration with age. Individual mod-
els also provided insight into unique aspects of decision
making, such as changes in estimated reward probabili-
ties, and sed-specific changes in the sensitivity to posi-
tive versus negative outcomes. Our results show that the
combination of models can provide detailed insight into
the development of decision making, and into complex
cognition more generally.
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Introduction
Adjusting behavior to new circumstances is a crucial skill for
intelligent creatures. The current study assesses how this
ability develops in human children and adolescents. The mat-
uration of higher-level cortical regions, which occurs late in de-
velopment, has been associated with increases in IQ (Sowell
et al., 2003). We hypothesized that the maturation of subcor-
tical regions, which extends throughout development (Denni-
son et al., 2013), might similarly be linked to the development
of reinforcement learning and decision making (Niv, 2009). To
test this, we assessed participants aged 8-18 and 25-30 on
a probabilistic choice task in a volatile environment, in which
they learned through trial and error which of two stimuli was
rewarding at any given time. Once participants selected the
rewarding stimulus consistently, it changed, forcing partici-
pants to switch behavior. Probabilistic feedback precluded ab-
solute certainty as to which stimulus was the correct one.

We explored a large number of computational models to
describe the cognitive processes involved in this task, and to
assess developmental changes. A first class of models imple-
mented specific, fixed strategies; a second class employed re-
inforcement learning (RL); and a third Bayesian inference. We
used each class of models to shed light on different aspects
of the decision making process, employing their conjunction to
provide a more complete picture of human adaptive behavior
in volatile environments.

Figure 1: Task design. Participants were given 5 seconds to
choose a box, which either revealed a golden coin (reward) or
was empty (no reward).

Methods

Participants We recruited 233 participants, 93 children and
adolescents (ages 8-18) and 54 adults (ages 25-30), from the
community, using protocols approved by the institutional re-
view board of UC Berkeley. Participants were free of present
or past psychological and neurological disorders. Compensa-
tion consisted in 25$ for the in-lab part and 25$ for completing
optional take-home saliva samples. We created equal-sized
age groups within non-adults based on quantile splits; adults
formed a separate group. Four participants were excluded be-
cause they ended the task early.

Experimental design During the two-hour lab visit, partici-
pants completed 4 computerized tasks, three questionnaires,
and a saliva sample. In the probabilistic switching task, partic-
ipants were asked to select one of two boxes on each of 150
trials, with the goal of collecting golden coins (reward). One
box was correct (75% reward probability), and the other was
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incorrect at any time (0% reward probability) (Fig. 1). Contin-
gencies switched without notice after participants reached a
criterion of 7-15 rewards: the previously incorrect box became
correct. Switches occurred after rewarded trials only and the
first correct choice after a switch was also always rewarded.
Participants underwent an average of 7.3 switches in the task
(range 2-9, sd=1).

Computational models
Strategy models We first implemented a noisy win-stay
lose-shift (WSLS) strategy. When participants received a re-
ward for box a, denoted (a,1), the value of choosing a again
(”staying”) was set to 1, Q(a|a,1) = 1, and the value of choos-
ing the other box (”shifting”) was set to 0, Q(ans|a,1) = 0. If
participants did not receive a reward (a,0), the value of a was
set to 0 and the value of the non-chosen box, ans, was set to
1. Choice on the subsequent trial was determined by a soft-
max function, p(a) = 1

1+exp(β(Q(ans)−Q(a))) , where β was fit to
individual participants.

We also implemented 2-trial WSLS, an extension of WSLS
that switched when two trials were unrewarded. The value
of switching was 1 when two consecutive trials for the same
box failed to produce reward, Q(ans|a,0,a,0) = 1. Otherwise,
the value of staying was 1 (and the value of switching was
0). When different boxes were chosen, the rewarded one
was repeated, Q(a|a,1,ans,0) = 1 and Q(a|ans,0,a,1) = 1.
When none was rewarded, the more recent one was repeated,
Q(a|nns,0,a,0) = 1.

RL models In reinforcement learning, learned Q-values
guide choices (Sutton and Barto, 2017). We tested distinct RL
models with different state spaces and different parameters.
In the basic α-β model, values were updated according to the
observed outcome o ∈ (0,1): Q(a) = Q(a) +α(o−Q(a)).
Values were initialized at 0.5.

In the 1-back α-β model, separate values were
learned for different 1-trial histories of actions and out-
comes, Q(at |at−1,ot−1) = Q(at |at−1,ot−1) + α(ot −
Q(at |at−1,ot−1)). The 2-back α-β model was an
extension with 2-trial history, with values of the form
Q(at |at−2,ot−2,at−1,ot−1).

The multi-parameter RL model was based on basic α-β
RL, with additional parameters cα, nα, and d. cα allowed
for updating of non-selected actions ans, based on counter-
factual outcomes 1− o: Q(ans) = Q(ans)+ cα(1− o−Qns),
where 0 ≤ c ≤ 1. nα introduced a separate learning rate for
negative outcomes: Q(a) = Q(a)+α(1−Q(a)) and Q(a) =
Q(a)+ nα(0−Q(a)), 0 ≤ nα ≤ 1. d shifted the softmax in-
decision point such that at equal values of Q(a) and Q(ans),
staying was more likely when d < 0, and switching was more
likely when d > 0: p(a = at−1) =

1
1+exp(β(0.5−d−Q(at−1))

.

Bayesian models Using Bayes rule, we estimated the prob-
ability that a chosen box was correct given the observed out-
come o: p(a = cor|o) = p(o|a=cor)p(a=cor)

p(o|a=cor)+p(o|a=inc) . The likelihood

was p(o = 1|a = cor) = preward and p(o = 0|a = cor) =
1− preward , where preward was truthfully set to 75%. Choice in
the subsequent trial took contingency switches into account:
p(a) = (1 − pswitch)p(a = cor) + pswitch(1 − p(a = cor)),
where pswitch was set to the empirical switch probability 0.05.

In the Bayesian multi-parameter model, pswitch and preward
were free parameters, and probabilities were softmax-
transformed for action selection, with parameters d and β.

Model fitting and comparison Parameters were fitted us-
ing maximum likelihood estimation. Model fits were calcu-
lated using the Akaike information criterion, AIC = −2LL+
2log(|θ|), with number of parameters |θ|. We interpreted fit-
ted parameters in the best-fit model of each class, assessing
age-related changes through the correlation between param-
eters and age. These tests were based on non-adult partici-
pants only, although results including adults were similar.

Results
Human behavior We first assessed participants’ responses
to switch trials. Younger participants switched faster than older
participants, as revealed by the effect of age on staying in the
”reward, no reward” condition (Fig. 2B), in a mixed-effects
regression model (both females and males: p < 0.001). At
the same time, younger participants reached lower asymp-
totic accuracy, as evident in the significant effect of age on
accuracy in a logistic regression in trials 3-7 post-switch (both
females and males: all β′s > 0.1, all p′s < 0.02; Fig. 2A). This
suggests that younger participants responded more strongly
to negative outcomes, which led them to switch quickly after
negative outcomes at the expense of asymptotic accuracy. In-
deed, younger children showed greater sensitivity to negative
reward in logistic regression models predicting action on trial
t + i from action and outcome on trial t (Fig. 2), revealed by
a positive effect of age on regression coefficients (females:
p = 0.003, males: p = 0.02).

Figure 2: Human Behavior. A) Percent correct choices aligned
to switch trials. Colors denote age group. B) Percent trials
in which actions were repeated (”stay”), for different reward
histories. C) Effect of outcome (no reward, reward) on future
choices, based on the regression model in the main text.

Strategy models We first assessed whether models of fixed
strategies captured human behavior. Fixed strategies are an
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intuitive way to describe decision making, e.g., ”I selected the
same box when it produced a coin, otherwise I switched to the
other box” (WSLS strategy, see methods). Nevertheless, sim-
ulations based on the WSLS strategy, with parameter β fitted
to individuals (Fig. 3C, see methods), led to poor task per-
formance and failed to capture characteristic human behavior
(Fig. 3A-B). Model fit was poor (AIC 34,442), but better than
chance behavior (AIC 41,345).

The more complex 2-back WSLS strategy provided a better
model fit (AIC 31,744). Two-state WSLS can be summarized
as ”I usually repeated my previous choice; I only switched
when the same box failed to produce a coin twice in a row”
(see methods). Simulations performed better and mimicked
some human age-based differences, such as faster switching
and worse long-term performance in the youngest age group
(Fig. 3D-F). The model captured age differences as a signif-
icant increase in β with age (females: r = 0.3, p < 0.001,
males: r = 0.4, p < 0.001), suggesting that decision noise
decreased with age.

In summary, the 2-back WSLS strategy captured some as-
pects of human behavior, but both strategy models failed to
capture the shape of learning curves (Fig. 3A, D) and perfor-
mance differences based on reward history (Fig. 3B, E).

Figure 3: Simulations for WSLS (A-C) and 2-back WSLS (D-
F). A, B, D, E as in Fig. 2. C, F) β fitted to participants of
different age groups.

History-based RL models As opposed to fixed strategy
models, RL can capture changes in behavior based on con-
tinuous, feedback-based learning. The 1-back α-β model
learned the values that were fixed in WSLS through reinforce-
ment (see methods). The model fit the data better than WSLS
(AIC: 30,608), but simulated behavior was indistinguishable
from WSLS (data not shown). The same was true for 2-back
α-β, the RL version of 2-back WSLS (better AIC: 30,180; in-
distinguishable behavior).

We also assessed the ability of classic, stateless RL to cap-
ture human behavior (see methods). Surprisingly, a simple

α-β model, which updated the values of each box based on
feedback in the previous trial, fit human data better than all
previous models (AIC: 25,051).

In summary, history-based RL models fit human data bet-
ter than fixed strategies, especially when the history encom-
passed more trials. Nevertheless, stateless RL fit the data
even better, suggesting that participants did not explicitly dif-
ferentiate values between histories. A different cognitive pro-
cess might explain human behavior better.

Figure 4: Simulations for RL models. A-D) α-β model. E-K)
Multi-parameter model. A, B, E, F as in Fig. 2. C-K) Fitted
model parameters for each age group.

Bayesian inference models One candidate process is in-
ferential reasoning. Our parameter-free Bayesian model esti-
mated the probability that each box was correct given the pre-
vious outcome (see methods). This model fit human data bet-
ter than all previous models except simple RL (AIC: 27,258),
but failed to produce the learning curves characteristic of hu-
man participants (Fig. 5A), and their sensitivity to reward his-
tory (Fig. 5B). Lacking free parameters, the model was also
unable to capture age differences.

This basic Bayesian model was based on the true probabil-
ities of switch trials and of obtaining reward, but those num-
bers were unknown to human participants. In the Bayesian
multi-parameter model, we treated these probabilities as free
parameters, in addition to softmax parameters d and β. Simu-
lated behavior under this model was closer to human learn-
ing curves (Fig. 5C) and history-dependent stay behavior
(Fig. 5D), and also replicated major age effects. Model
fit surpassed the basic model (AIC: 23,335). Several age-
based parameter changes gave rise to this behavior. β in-
creased significantly with age (females: r = 0.3, p < 0.001,
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males: r = 0.3, p < 0.001); preward decreased from around
80% to around 60% (females: r = −0.2, p = 0.01, males:
r = −0.2, p = 0.02), suggesting that the youngest children
over-estimated reward probabilities, whereas adults underes-
timated them; d decreased in males only (females: r =−0.09,
p = 0.2, males: r = −0.3, p < 0.001), suggesting an in-
creased tolerance for staying in the face of decision uncer-
tainty; there were no changes in pswitch (females: r = 0.008,
p = 0.9, males: r = 0.06, p = 0.5).

In summary, Bayesian inference captured the central char-
acteristics of human behavior, and provided insight into age-
related changes in terms of estimated reward probabilities, de-
cision noise, and undecision point.

Figure 5: Simulations for Bayesian models. A-B) Basic model
without free parameters. C-H) Multi-parameter Bayesian
model. A-D as in Fig. 2. E-H) Fitted parameters.

Multi-parameter RL models Benefiting from their flexibility,
RL models can mimic inferential reasoning by factoring in the
structure of the task and updating the value of unchosen op-
tions based on counter-factual outcomes (see methods). We
tested RL models with parameter cα for counter-factual updat-
ing, in addition to the ability to differentiate between positive
and negative feedback (α vs nα), and other parameters, to
identify the overall best model, a state-less model with five
free parameters, α, β, cα, nα, and d (AIC: 23,271).

Model simulations reproduced human-like learning curves
(Fig. 4E) and sensitivity to reward history (Fig. 4F), and repli-
cated some age-related changes, such as low long-term per-
formance in the youngest age group. Age-related differences
were related to increasing β (females: r = 0.4, p < 0.001,
males: r = 0.4, p < 0.001), decreasing learning rate nα (fe-
males: r =−0.1, p = 0.06, males: r =−0.3, p < 0.001), de-
creasing d in males only (females: r =−0.08, p= 0.3, males:
r =−0.3, p < 0.001), increasing learning rate α in males (fe-
males: r = 0.06, p = 0.4, males: r = 0.3, p < 0.001), and de-
creasing c, the counter-factual learning parameter, in females

(females: r =−0.2, p = 0.04, males: r =−0.05, p = 0.5).
Taken together, the multi-parameter RL model achieved

the best model fit, and provided insight into developmental
changes related to decreasing sensitivity to negative feed-
back, and gender-specific changes in sensitivity to positive
feedback and counter-factual learning.

Discussion
Decision making can be described in various ways, including
specific strategies, incremental feedback-based learning, and
inferential reasoning. Different models can replicate different
behavioral patterns observed in humans, and instead of se-
lecting just one model based on a measure of fit, we integrated
the information from several models to obtain a more complete
picture of cognitive development in this task. We found that
participants’ behavior was better described by a 2-back strat-
egy than a simple win-stay lose-shift strategy, and that incre-
mental history-based learning provided an even better fit. Al-
though pure Bayesian inference provided the optimal strategy
for the task, the model described human behavior poorly. Pa-
rameters that captured uncertainty about the task design were
necessary to capture human behavior in a multi-parameter
Bayes model. This model revealed that the youngest par-
ticipants systematically overestimated reward probabilities,
whereas adults underestimated them. A multi-parameter RL
model, with the best overall model fit, revealed decreasing
sensitivity to negative outcomes in both genders, and to pos-
itive outcomes in males only, whereas counter-factual updat-
ing changed only in females. Both Bayesian and RL models
also revealed changes in decision threshold in males, and all
models revealed pronounced decreases in decision noise or
exploration.
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