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Abstract

Advances in the use of neural networks in both cognitive neu-
roscience and machine learning have generated new chal-
lenges: while they have proven powerful at learning complex
tasks, what they learn and how they come to perform those
tasks often remains a mystery. Here, we examine a novel ap-
proach to these challenges, inspired by recent spatial and al-
gebraic analyses of abstraction and generalization in network
architectures. We evaluate it, and compare it to other mea-
sures, by using it to test theoretical predictions regarding the
influence that training has on the development of shared vs.
separated representations, and their impact on network per-
formance. We find that the proposed measure outperforms all
others in identifying a theoretically predicted, low dimensional
set of linear spatial relationships that, in turn, best predict net-
work performance.
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Introduction

The application of deep learning methods to artificial neural
networks has led to remarkable progress in solving difficult
problems in machine learning (e.g., computational vision and
natural language processing). However, the solutions that
these systems arrive at often remain difficult to interpret in
lower dimensional forms than the networks themselves (Li,
Farkhoor, Liu, & Yosinski, 2018; Bengio, Courville, & Vincent,
2013; Bau, Zhou, Khosla, Oliva, & Torralba, 2017).A simi-
lar problem arises when using deep learning as models of
cognitive and/or brain function: even when a network can be
trained to perform a given task or set of tasks, it is not al-
ways clear what this reveals about how the task is performed,
and/or whether it is being done in the same way as the hu-
man brain. This presents an impediment in both engineering
(e.g., in generalization) and for understanding natural systems
(e.g., whether the solutions correspond to those used by the
brain (Yamins et al., 2014; Kriegeskorte, Mur, & Bandettini,
2008; Han et al., 2019; Horikawa & Kamitani, 2017; Seeliger,
Güçlü, Ambrogioni, Güçlütürk, & Van Gerven, 2018; Wen et
al., 2017)). These challenges have motivated the search for
analysis methods that can determine whether a high dimen-
sional network has learned more compressed, lower dimen-

sional representations and, if so, can explicitly identify them.
The most common current approaches use simple statisti-

cal procedures, such as cross-correlations of activity patterns
or connection weights, and/or principal components analysis
(PCA) based on those. While often useful, these methods
generally make strong assumptions about the underlying dis-
tributions that are generally violated by neural networks. Mo-
tivated by these considerations, we consider a novel geomet-
ric approach, based on work recently reported by Bernardi et
al. (2018). To evaluate the success of this method, we use
a simple three-layered network, and a theoretically-motivated
training paradigm. The theory predicts well-specified forms of
structure that should emerge in the hidden layer of a network
under particular training conditions, that can be empirically
validated in network performance. Experiments indicate that
the new approach successfully captures this predicted struc-
ture, and provides a rich body of new geometric data.

Background
Previous theoretical work has identified a fundamental ten-
sion between shared representations that facilitate learning
and generalization, and separated representations that fa-
cilitate simultaneous execution of multiple processes (Feng,
Schwemmer, Gershman, & Cohen, 2014; Musslick, Dey, &
Musslick, 2017; Alon et al., 2017). The former is exploited
by standard multi-task training strategies in deep learning
(Caruana, 1997; Bengio et al., 2013), while the latter is ex-
ploited by traditional multiprocessor architectures (”embar-
rassing parallelism”) (Jin et al., 2011). This same tension is
thought to explain the distinction between controlled and auto-
matic processing in humans, in which shared representations
enable rapid, flexible generalization to novel task domains, at
the expense of serial, control-dependent processing; while
separated, task-dedicated representations support efficient,
parallel execution, but take longer to learn (Sagiv, Musslick,
Niv, & Cohen, 2018).Previous work has explored this tension
indomains that share a set of input and output dimensions,
and each task involves a mapping of information from a par-
ticular input dimension to a particular output dimension. This
work has shown that training on tasks individually generally
favors the formation of shared representations in the hidden
layers of a network, which allows tasks that share a given in-
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put dimension (but map that to different output dimensions) to
profit from all training trials involving that dimension (Musslick
et al., 2017). However, such shared representations can pro-
duce cross-talk if the network is required to perform more than
one task at a time. As a consequence, when networks are ex-
plicitly trained to perform two or more tasks simultaneously
(that is, on concurrent multitasking, as distinct from multi-task
learning), they develop separated representations dedicated
to each task. Measurements of performance are consistent
with these predictions: networks trained on tasks sequentially
learn more quickly than ones trained explicitly to multitask, but
suffer when tested for multitasking performance; conversely,
training on simultaneous performance takes longer, but leads
to efficient multitasking capability. Despite these observations,
it has been difficult to directly confirm the predicted forms of
representation presumed to be responsible for these effects.
This invites new methods of network analysis.

In the sections that follow, we describe a novel approach to
analyzing the geometry of hidden layer representations, ap-
ply it to networks trained as outlined above, and compare it
with other standard approaches to network analysis in their
ability both to identify theoretically predicted representational
structure, and its association with corresponding patterns of
performance.

Methods

Network architectures

For simplicity, we focus on feed-forward neural networks with
the following architecture (see Figure 1). Each network has
two input layers, stimulus x and task u, a single output layer z,
and one or more associative (hidden) layers. Units in the stim-
ulus and output layers are subdivided into subgroups termed
dimensions. For each pair (i, j) of input and output dimen-
sions, we associate (i) a task mapping ti j from activity patterns
in i to activity patterns in j, and (ii) a unique task unit ui j in the
task input layer, taking values in {0,1}. Given training data,
composed of a set of pairs (xi,z j) of activity patterns in i and
j such that ti j : xi 7→ z j, the learning objective is to regress
xi into z j whenever unit ui j is active. Multiple units may be
simultaneously active.

To perform a set of tasks {ti0 j0 , . . . , tik jk} means to realize
the relevant mappings from input to output dimensions, while
clamping all output dimensions other than j0, . . . , jk to zero.

Representations

Formal treatments of network representation have been de-
veloped in a number of disciplines, e.g. (Chung, Lee, & Som-
polinsky, 2018). Here, we propose a variant of a novel geo-
metric measure proposed by Bernardi et al. (2018), and eval-
uate its ability to identify forms of representation predicted to
arise in response to training on single task vs. multitasking
performance, as discussed above. Specifically, the theory
predicts that single task training will lead to sharing of rep-
resentations for input dimensions that are common to a set of
tasks, whereas training on multitasking will lead to separated
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Figure 1: Network architecture from (Musslick et al., 2017). At
initialization, we set additive biases θh = θo =−2. We update
these biases and the weight matrices W j

i , W̃ j
i , Wh, and Wo

via stochastic gradient descent and backpropagation.

representations, one for each task.
For example, consider a task space compromised of two

input dimensions (e.g., colors and words) and two output di-
mensions (e.g., verbal and manual responses). The following
four tasks can be defined: color naming, word reading, color
pointing (e.g., point left for red and right for green) and, anal-
ogously, word pointing. There are two extreme forms of hid-
den layer representation a network could learn for performing
these four tasks. It could learn a single set of representa-
tions for colors that are mapped to both spoken and manual
responses, and similarly for words. Task units would then se-
lect the appropriate input representations (color or word) and
output dimension for a given task. This efficiently exploits a
single set of representations for each input dimension, but pre-
cludes performing more than one task at a time. For example,
simultaneously color naming and word pointing elicits cross
talk from color pointing and word reading. This can be solved
the other extreme of representation: dedicating a set of input
representations to each task (i.e., combination of input and
output dimensions); for example, different representations of
colors for spoken and manual responses. While less efficient
and longer to learn, this permits simultaneous performance of
color naming and word pointing (and conversely, color point-
ing and word reading).

Table 1 shows these schemes, where each set of represen-
tations is respresented as a ”node.” Each entry in the tuples
indicates activity of the associated nodes, 1 for high activity
and 0 for low. These tuples can be visualized as points in a
vector space. The points from Network 1 (shared represen-
tations) lie on a 2d plane, and, in particular, on the vertices
a parallelogram (Figure 2, left). Approximate arrangement of
points For Network 2 (separated representations) is shown in
Figure 2, right, though an exact representation in 3 dimen-
sions is not possible.

Consider a network that begins like Network 1, and grad-
ually transitions to that of Network 2 (here we identify the
length-4 tuples of Network 1 with length-6 tuples by appending
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Figure 2: Shared and distributed coding schemes. The white
displacement vector~ε represents a projection onto the plane
an an intermediate point on the path between two representa-
tions for word pointing.

zeros to the end). Suppose that the tuples for speaking stay
fixed, while the those for pointing move along straight paths to
their destinations, as indicated in Figure 2. Early on, the net-
work will be vulnerable to cross-talk if it attempts to perform
multiple tasks simultaneously, since, for example, the nonzero
elements of word pointing and color pointing overlap. Later
this effect will diminish, as the entries in the first three slots
of the word pointing pattern descend to 0. In general, the de-
gree of cross-talk should scale proportionally with the overlap
in these three entries.

This idea represents the fundamental geometric intuition for
the present work. In practice, the notions of tuple and entry
become unwieldy. To compensate, we project not onto the
first three coordinate axes, as in the idealized example, but
instead onto the 2d plane spanned by the parallelogram. This
method proves powerful.

Table 1: Task specifications for two neural networks. Let-
ters C, W , S, and P denote dedicated nodes for color, word,
speech, and pointing in Network 1. Symbol CS denotes the
node for color in Network 2 that is specifically dedicating to
speaking. Symbols WS, CP, and WP are defined similarly.

Network 1 Network 2
Task (C,W ,S,P) (CS, WS, S, CP, WP,P)
speak color (1,0,1,0) (1,0,1,0,0,0)
speak word (0,1,1,0) (0,1,1,0,0,0)
point color (1,0,0,1) (0,0,0,1,0,1)
point word (0,1,0,1) (0,0,0,0,1,1)

Experiments
Cross validation We first validated the measure against
network performance in simultaneous multitasking, as defined
by mean square error (MSE). Ten variants of the network
were generated by varying parameters (e.g., number of hid-
den units and in/out dimensions, L2 weight regularization, and
training corpus). For each variant, 10 networks with random
initial weights were trained to perform tasks in sequence, and

another 10 to perform them simultaneously. Degree of repre-
sentational separation was measured using eight variants of
the proposed method, and compared with standard similar-
ity measures (e.g., Euclidean distance and correlation) using
two criteria: (i) ability of a standard linear classifier to predict
training condition (single vs. multi) from the measure, and (ii)
its Pearson correlation with multitasking MSE. Among these,
only the proposed measure and PCA-driven dimension esti-
mates (e.g. inverse participation ratio) maintained classifica-
tion accuracy above 95% and Pearson correlation above 0.75
across all benchmarks.

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

cube_2	//	20190603-230924-f3d5gsc25nwu20000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

linear_2	//	20190529-004028-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

square_2	//	20190529-013442-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

cube_2	//	20190603-230924-f3d5gsc25nwu20000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

linear_2	//	20190529-004028-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

square_2	//	20190529-013442-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

cube_2	//	20190603-230924-f3d5gsc25nwu20000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

linear_2	//	20190529-004028-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

square_2	//	20190529-013442-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

cube_2	//	20190603-230924-f3d5gsc25nwu20000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

linear_2	//	20190529-004028-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

square_2	//	20190529-013442-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

cube_2	//	20190603-230924-f3d5gsc25nwu20000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

linear_2	//	20190529-004028-f3d5gsc25nwu50000pscr1-1

6/7/2019 temp-plot.html

file:///Users/gh10/a/c/p/taskhr/code/manifolds/temp-plot.html 1/1

square_2	//	20190529-013442-f3d5gsc25nwu50000pscr1-1

linear

Σ=0.01,  M2=0.07,  M5 = 0.33

Σ=0.62,  M2=0.00,  M5 = 0.06

square

m=0.02, mse2=0.06,mse5 0.31

m=0.59, mse2=0.02,mse5 0.04

cube

m=0.08, mse2=0.08,mse5 0.33

m=0.71, mse2=0.00,mse5 0.01

Σ=0.62    M5 = 0.06

Σ=0.01    M5=0.33


Σ=0.71    M5=0.01

Σ=0.08    M5=0.33

Σ=0.59    M5=0.04

Σ=0.02    M5=0.31


Figure 3: Variation in representation geometry across bench-
mark data sets. Each plot displays an isometric embedding
of 4 mean task activation patterns. The input dimension of
each task is indicated by color, output by solid/open circles.
Symbols M5 and Σ denote 5-way multitasking MSE and the
proposed sharing measure, respectively.

Dynamic tracking We also tested precision in tracking evo-
lution of network structure across time under two distinct train-
ing regimes. In the first experiment, the proposed measure
accurately tracked MSE (mean Pearson correlation with MSE
over training: 0.97 for 5-way multitasking; 0.99 for 2-way mul-
titasking). Both curves were essentially monotonic, however,
raising a concern that correlation could reflect merely mo-
tion in a consistent direction over time. To test we applied
a more complex regime characterized by alternating periods
of strictly-single and strictly-multitask training. As hoped, this
regime induced non-monotonic trajectories due to periodic
”catastrophic interference.” Pearson correlation with MSE loss
curve and geometric sharing remained high (0.96 for both 2-
and 5-way multitasking) over 10 networks. More significantly,
the sharing measure captured salient monotone features of
the loss curve, see Figure 4.

Conclusion

We present a novel extension of a recent geometric approach
to study spatial and functional relationships between distinct
cognitive representations. The results prove effective in track-
ing system-level phenomena such as 5-way multitasking per-
formance and catastrophic interference, and offer rich new
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Figure 4: (a) Learning trajectory under a training regime de-
signed to induce catastrophic interference. Traces are Z-
scored values of 5-way multitasking MSE (M5), geometric rep-
resentation sharing (Σ), and 2-way multitasking MSE (M2).
MSE scores were first multiplied by -1 for ease of visual align-
ment. Curves are averaged over 10 networks. (b) Variation
between networks under the training regime associated to (a).
In each network, two-way multitasking MSE was correlated
with PCA-based dimension estimates - a common proxy for
sharing. These estimates included inverse participation ra-
tio across all tasks (blue), and averaged over 4-element task
subsets (orange), the proposed sharing measure (red), and
the norm of the displacement vector from which the proposed
measure is taken (as the horizontal component). (c) Simi-
lar to (b), for the 10 networks trained under the original, non-
catestrophic training regime.

shape statistics to describe network geometry. While mutu-
ally validating, these statistics complement and expand cur-
rent methods of compression and network analysis.
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