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Abstract: 

The similarity space of objects has been extensively 
used as a tool to relate representations among minds, 
brains, and models. However, the psychological 
construct of “similarity” is not well defined – objects 
can be similar in different ways. Here, we explored the 
similarity among inanimate objects, varying the 
instructions and task, and compared these to deep net 
representations and human brain responses. 
Specifically, we used a typical unguided sorting task in 
which participants drag and drop similar items nearby; 
a shape-guided sorting task, in which participants are 
explicitly instructed to arrange objects by shape 
similarity; and a pairwise-visual search task, in which 
participants have to find one target amongst others 
items, measuring similarity implicitly through reaction 
time. Our results show that (i) there are clear 
differences in the measured similarity space of objects 
across tasks, and (ii) the implicit similarity measured by 
visual search was better reflected in both deep net fits 
across all the early layers, and more extensively along 
the ventral visual stream. Broadly, these results 
highlight that different kinds of similarity can be 
manifest in different behavioral tasks, highlighting a 
rich space for elaborating the ways in which we explore 
representational matches between minds, brains, and 
models.  
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Introduction 

We can effortlessly recognize thousands of objects, 
and we have knowledge about them—e.g. what they 
look like, how we use them, where we find them, and 
what they are for. Thus, there are many dimensions 
and properties along which objects can be similar to 
and different from one another. Measuring and relating 
object similarity spaces among behavioral measures, 
neural measures, and modeling responses to objects 
has been a powerful way to gain insight into the nature 

of visual object representations and its transformations 
along the ventral visual stream (e.g. Kriegeskorte et 
al., 2008, Yamins & DiCarlo, 2016).   
 
While neural regions and model layers are typically 
assumed to have different representational similarity 
structures, that same assumption is not often applied 
to behavioral measures of similarity. A sometimes 
implicit assumption is that there is (only) one 
behavioral similarity space.  
 
In the present work, we measured the similarity among 
a set of inanimate objects using three different 
behavioral methods, changing both the task and the 
instructions to emphasize varying degrees of 
perceptual similarity. Our goal was to understand how 
these behavioral similarity spaces relate to each other, 
as well as to both human brain responses and deep 
neural network (DNN) responses along their 
respective processing hierarchies. 

Methods and Results 

Behavioral Tasks 

We measured object similarity spaces using three 
different approaches: 1) an unguided multi-
arrangement sorting task (sorting task for short, 
Kriegeskorte and Mur, 2012), 2) a shape-guided 
sorting task that directs participants to mid-level visual 
feature information by instructing them to arrange 
objects by shape (given hypothesized importance of 
shape information in occipitotemporal cortex, e.g. 
Bracci & Op de Beeck, 2016; Long et al., 2018), and 3) 
a visual search task (Cohen et al., 2017).  
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For the sorting tasks, participants (n = 26 for unguided, 
n = 25 for shape-guided) were asked to arrange 72 
images of inanimate objects in a circular arena 
(Kriegeskorte and Mur, 2012). This same task was run 
in two separate versions: an unguided version and a 
shape-guided version. In the unguided version we 
asked participants to arrange objects based on 
general similarity, without further specification of the 
kind of similarity to use. In the shape-guided version, 
participants were instructed to arrange objects 
specifically based on shape, and to avoid organizing 
them based on other properties (e.g. semantic 
category, color). The final output for both tasks is a 
dissimilarity matrix of distances for all the object 
comparisons for each experiment. 

The visual search task (n = 1272) was an odd-one-out 
task, in which a participant had to find the unique 
object in a circular array with 5 copies of the distractor 
item (Figure 1). In this experiment, the unit of interest 
to measure object similarity is reaction time (RT): the 
faster the target is found among a particular distractor 
image, the more dissimilar the target is from that 
distractor. This experiment was conducted on using 
Mechanical Turk, and RTs were measured for all 2556 
pairwise comparisons of 72 object images, Notably, in 
the first two tasks participants are asked to explicitly 
judge the similarity among different objects, while in 
the third task, the similarity measure is implicit in 
participants’ reaction times. 

 

 

Exploring the behavioral spaces 

The reliability of all three tasks was moderately high, 
with a split-half correlation of 0.73 for the unguided 
sorting space, of 0.84 for the shape-guided sorting 
space, and of 0.55 for the search RT space.  
 
We visualized the similarity space produced by the 
three tasks using multi-dimensional scaling (MDS; 
Figure 2). Qualitatively, visual inspection reveals that 
the unguided sorting space shows clustering by 
semantic categories (i.e. foods, musical instruments 
etc.) in contrast to the other two tasks.  
 
Quantitatively, the shape-guided sorting space has 
comparable correlations with both the unguided sorting 
space (r=0.29) and the search RT space (r=0.34), 
which are both low, in the context of their internal 
reliability. The correlation between the unguided 
sorting space and the search RT space were much 
lower (r=0.12). Thus, these three similarity spaces 
seem to contain largely different information. In 
particular, even though the shape-guided sorting 
space and the RT spaces represent more closely 
shape-related features, they’re not as correlated as 
one would expect and might reflect different aspects of 
the shape space.  

Relating behavior and DNNs 

How are these three facets of behavioral object 
similarity related to the representational 
transformations along the deep net layer hierarchy? To 
answer this question, for each layer of AlexNet (five 
convolutional and three fully connected layers), pre-

 

Figure 2: Exploring the behavioral spaces. MDS plots for the unguided sorting, the shape-guided sorting 
and the visual search tasks. R-values indicate split-half reliability estimates for each space. 
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trained on ImageNet, we measured activations to each 
of the 72 items, and produced a representational 
dissimilarity matrix (RDM), using a Euclidean distance 
metric. We then computed the correlation between 
each layer’s RDM and the three similarity spaces. 
Correlations were weighted by the individual tasks 
reliabilities so as to make them comparable across 
tasks. We find that the implicit task is most correlated 
with early to mid-layers of the DNN; only the last read-
out layer 8 shows a stronger correlation for the two 
similarity spaces measured with the drag and drop 
task (Figure 3). 

Relating behavior and brain 

How do these three behavioral similarity spaces match 
neural similarity along the visual cortex? To explore 
this question, we scanned participants (n=11) as they 
viewed the same objects used in the behavioral 
studies, using a mini-block paradigm to measure 
reliable neural responses to each item (Konkle & 
Caramazza, 2014).  

We then performed three separate searchlight 
analyses, correlating the behavioral similarity of each 
task with the neural similarity. These brain-behavior 
correlations were noise-corrected by both searchlight 
pattern reliability and task reliability. As a preliminary 
analysis step, we adopted a lenient threshold to 
investigate the broad similarity between neural and 
behavioral space. We restrict visualization to all voxels 
with brain-behavior correlations above r=0.25, 
overlaying them on the same surface map (Figure 4). 

The searchlight results revealed that the visual search 
similarity space most extensively correlated with 
neural patterns throughout the visual system. 

Additionally, the shape-guided arrangement task was 
more strongly correlated with lateral and ventral OTC 
(lOTC, vOTC), and not parietal or early visual cortex. 
Finally, the unguided sorting task was the least 
extensive, correlating with neural similarity most 
strongly in anterior patches of lOTC and vOTC.  

Conclusions 

There are three main empirical findings of this paper. 
First, we found that there are different, reliable, 
behavioral similarity spaces among inanimate objects 
that can be elicited through different methods and 
instructions.  Second, the similarity between pairs of 
items as measured implicitly by visual search speed 
has the strongest relationship with the similarity 
spaces in the layers of DNN models—all layers of an 
ImageNet-pretrained AlexNet (except the output layer) 
show the strongest relationship to search similarity. 
Third, an extensive swath of cortex is correlated with 
visual search similarity, with weaker and more 
restricted correlations evident in the arrangement-
based similarity tasks.  

One important distinction between these behavioral 
similarity spaces is whether similarity is judged 
implicitly or explicitly. Thus, one possible interpretation 
of these data is that the process of explicitly judging 
the similarity of two items may not give access to early 
perceptual representational similarity—that is, the 
kinds of representations that are evident in early and 
mid-stages of the visual system and of DNN 
representations.  However, it is important to note that it 
is also possible that the arrangement-based method 
itself, rather than the explicit nature of the similarity 
judgments, is what prevented the more perceptual 

 
Figure 3: Relating behavior and DNNs. Weighted 
correlation between RDMs computed from AlexNet 

layers and behavioral RDMs.  
 

 

Figure 4: Relating behavior and brain: 
searchlight analysis. Surface brain map overlaying 
results of three separate searchlight analyses, one 

per behavioral task. 
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similarity dimensions from manifesting in the 
measured similarity space.  

Broadly, these results shed light on the nature of 
object representations in the visual system and in DNN 
models.  First, these results show that there is an 
extensive swath of cortex that is correlated with visual 
search behavior, extending the work of Cohen et al, 
2017 to item-level similarities only within inanimate 
object categories. Further, these results join an 
increasing body of literature suggesting that the visual 
system maintains a low-to-mid level perceptual 
representation, even at the more anterior stages of the 
hierarchy (e.g. Long et al, 2018; Baldassi et al., 2013).  
Finally, these results highlight that different kinds of 
similarity can manifest in different behavioral tasks, 
highlighting a rich space for elaborating the ways in 
which we explore matches between minds, brains, and 
models.  
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