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Abstract

Deep neural networks (DNNs) are currently the models
that account for higher variance of the responses from
the human visual cortex. In this work, we aim to explore
the power of DNNs as a tool to gain insights into func-
tions of visual brain areas. Particulary, we focus on scene
selective visual areas. We use a set of DNNs trained to
perform different visual tasks, comprising 2D, 3D and se-
mantic aspects of scene perception, to explain fMRI re-
sponses in early visual cortex (EVC) and scene selective
visual areas (OPA, PPA). We find that EVC representation
is more similar to early layers of all DNNs and deeper lay-
ers of 2D-task DNNs. OPA representation is more similar
to deeper layers of 3D DNNs, whereas PPA representa-
tion to deeper layers of semantic DNNs. We extend our
study to performing searchlight analysis using such task
specific DNN representations to generate task-specificity
maps of visual cortex, and visualize their overlap with
existing ROI parcels. Our findings suggest that DNNs
trained on a diverse set of visual task can be used to gain
insights into functions of visual cortex. Our approach has
the potential to be applied beyond visual areas.
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Introduction

Deep neural networks (DNNs) are currently state-of-the-art
models for explaining cortical responses in the visual cor-
tex (D. L. K. Yamins et al., 2014; Cichy, Khosla, Pantazis, &
Oliva, 2017; Tacchetti, Isik, & Poggio, 2016; Khaligh-Razavi
& Kriegeskorte, 2014; Cichy, Khosla, Pantazis, Torralba, &
Oliva, 2016; D. L. Yamins & DiCarlo, 2016) . DNNs trained on
object classification task have been shown to explain human
and monkey cortical responses in the inferior temporal cortex
(IT) area, which is known to play a role in object recognition.
Further, it has been revealed that unsupervised models are
unable to explain the IT responses as well as the supervised
models (Khaligh-Razavi & Kriegeskorte, 2014). This empha-
sizes the importance of using a model which has been opti-
mized on a related task to the brain region under study. In this
work, inspired by (Khaligh-Razavi & Kriegeskorte, 2014), we
investigate for the first time if we can reveal functions of brain
regions using DNNSs trained on different aspects of visual per-
ception. Our preliminary results can be found in (Dwivedi &
Roig, 2018). To achieve this, we use 20 DNNs trained on 2D,
3D and semantic tasks from Taskonomy (Zamir et al., 2018)
dataset and fMRI dataset collected on indoor scene images
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Figure 1: Overview of our approach: We use a) activations
of DNN trained on 2D, 3D, semantic and geometric tasks, and
b) fMRI responses, both on stimuli set from (Bonner & Ep-
stein, 2017) to find ¢) rankings of DNNs for each brain ROI
using RSA. d) We highlight task specificity in visual cortex us-
ing searchlight.

from (Bonner & Epstein, 2017) (Fig. 1a). We rank which type
of DNNs explain the responses of ROIs better than others with
Representational Similarity Analysis (Fig. 1b). To extend our
investigations beyond the selected ROIs we perform search-
light analysis (Fig. 1c) to generate a whole brain task speci-
ficity plot using the task-specific DNNs.

Our results from ROI analysis suggest that EVC responses
are better explained by 2D-tasks trained DNNs, OPA re-
sponses by 3D DNNs, and PPA responses by DNNs trained
on semantic tasks. While in this work, we only focus on scene
images and scene-selective visual areas, our approach is
general and can be extended to other stimuli types and other
brain areas, as suggested by our searchlight results.

Methods

In this section, after we detail how we select task-specific ac-
tivations from the DNNs, we describe the fMRI data and the
analysis performed.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0
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Figure 2: Methods used: a) representational similarity analy-
sis for DNNs’ rankings, and b) Searchlight Analysis to visual-
ize task-specificity of the whole brain.

Task-specific DNNs’ Representations

We use task-specific DNNs trained on Taskonomy
dataset (Zamir et al., 2018)". Taskonomy dataset is a
large-scale image dataset containing 4 million images with
annotations and pretrained DNN models available for 26
vision related tasks. The tasks included in this dataset cover
most common computer vision tasks related to 2D (e.g. edge
detection), 3D (e.g. depth estimation), and semantics (e.g.
scene and object classification). The DNN models trained
on different tasks from Taskonomy dataset share a common
encoder architecture and have a task-specific decoder, which
varies according to the output structure of each task. The
encoder is a fully convolutional ResNet-50(He, Zhang, Ren,
& Sun, 2016) consisting of 4 residual blocks each containing
multiple convolutional layers, without any pooling layer. For
selecting task-specific representation we select the activation
from the last layer of the final encoder’s block (block-4).

fMRI data

We use the fMRI data from (Bonner & Epstein, 2017). The
stimuli images used for analysis consist of 50 indoor environ-
ments images. The subjects’ fMRI responses were obtained
while they performed a category-recognition task (bathroom
or not). For RSA analysis we use the precomputed subject
averaged RDMs of the EVC, PPA and OPA. For more details
about the fMRI data please refer to (Bonner & Epstein, 2017)

'pretrained models downloaded from

https://github.com/StanfordVL/taskonomy/tree/master/taskbank
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Representational Similarity Analysis (RSA)

RSA is used to compare the information encoded in brain re-
sponses with a computational or behavioral model by comput-
ing the correlation of the corresponding representation dissim-
ilarity matrices (RDMs).

Representation Dissimilarity Matrix (RDM). The RDM for
a dataset is constructed by computing dissimilarities of all pos-
sible pairs of stimulus images. For fMRI data, the RDMs are
computed by comparing the pairwise fMRI responses, while
for DNNs the RDMs are computed by comparing the pairwise
layer activations for each image pair in the dataset. The dis-
similarity metric used in this work is 1 — p, in which p is the
Pearsons correlation coefficient, as illustrated in Fig. 2a.

Statistical Analysis. We use RSA toolbox (Nili et al., 2014)
to compute RDM correlations, as well as their corresponding
p-values and standard deviation using stimulus-label random-
ization test. For determining which RDM better explains the
neural RDMs, we perform a bootstrap test. The number of
bootstrap iterations for all the analysis was set to 5000.

Searchlight Analysis.

We perform a searchlight analysis to visualize the overlap of
the DNNs’ searchlight results with predefined ROls, and to
reveal which other regions have similar representations similar
to the task-specific DNNs selected. We also generate a color
coded task-specificity map to visualize which brain area show
higher correlation with which task type (Fig. 2b).

Visualizing Overlap with Existing ROIs. We know from the
ROI analyses which DNNs are the best fit for each ROI. We
next used exploratory searchlight analyses to visualize the fit
of these models throughout the rest of the brain. To do this, we
selected the DNNs that showed highest correlation with EVC,
PPA, and OPA. We then performed a searchlight analysis us-
ing partial correlation of one DNN RDM with RDMs of each
searchlight sphere while selecting the other 2 DNN RDMs as
the control variables. Using this analysis we aimed to visual-
ize the cortical regions that have representations specific to
2D, 3D and semantic DNNs.

Task-specificity Map For this analysis, we select 14 DNNs
from Taskonomy dataset. We next perform a searchlight anal-
ysis using partial correlation of RDM of deeper layer (block
4) of each DNN with fMRI RDMs of each searchlight sphere
while selecting the RDM of early layer of DNN as the control
variable. The assumption behind using RDMs of early layer
as control variable is that early layers have EVC-like repre-
sentation and therefore by partialling out its effect, only the
task-specific signal of each RDM is left behind. After obtain-
ing the searchlight results for each RDM we find which type
of task shows the maximum correlation at each searchlight
sphere and color code it according to task type.
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Figure 3: RSA of Brain ROls with task-specific DNNs.
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Figure 4: Hierarchical clustering on DNN RDMs.

Variance Partitioning Analysis. Variance partitioning
method is used to determine the unique and shared contri-
bution of individual models when considered in conjunction
with the other models. We describe the analysis by consid-
ering the case of OPA predicted by 3D, 2D, and semantic
DNNs. First, the off-diagonal elements of the OPA RDM
are assigned as the dependent variable (predictand). Then,
the off-diagonal elements of 3 DNN RDMs are selected as
the independent variable. Then, we perform seven multiple
regression analysis: one with all three independent variables
as predictors, three with three different possible combinations
of two independent variables as predictors, and three with
individual independent variables as the predictors. Then,
by comparing the explained variance (r2) of a model used
alone with the explained variance when it was used with other
models, the amount of unique and shared variance between
different predictors can be inferred. For the other variance
partitioning analysis, the predictors and predictands were
modified accordingly, and we followed the same steps.

Results

We first report the result of DNN rankings for EVC, OPA and
PPA. We next report the results of searchlight analysis.
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Figure 5: Searchlight analysis of task-specific DNNs.

DNN Rankings for ROls

In Fig. 3a, and b, we show the correlation of EVC RDMs with
block 1 and block 4 RDMs of 20 DNNs, respectively. We ob-
serve that EVC shows high correlation with early layers of all
DNNs and deeper layers of 2D DNNs. In Fig. 3c and d, we
show the correlation of OPA and PPA with block 4 RDMs of
20 DNNs. We observe that OPA shows high correlation with
deeper layers of 3D DNNs, and PPA shows high correlation
with those of semantic DNNs. The results suggest that EVC is
biased towards 2D scene representations, the best fit for OPA
are 3D scene representations and the preference for PPA are
semantic representations of the indoor scenes.

How DNN representations are clustered? To observe if
the DNN representations are clustered to corresponding task
type we perform hierarchical clustering similar to (Dwivedi &
Roig, 2019) on block 4 RDMs of each task. As shown in Fig. 4,
the tasks are indeed clustered into different clusters of 2D,3D
and semantic tasks.

Visualizing the ROI overlap with DNN searchlight

The top 95th-percentile correlation for the searchlight results
are displayed in Fig. 5. As expected, we observe that there
is high overlap between the ROIs and searchlight result of
DNNs that showed the highest correlation with correspond-
ing ROI. We observe that beyond the above mentioned ROls,
other visual areas are also highlighted as showing 2D, 3D, and
semantic functionality.
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Figure 6: Task specificity map. We use blue for 2D, green
for 3D, and magenta for semantic tasks.

Figure 7: Variance partitioning results for a) EVC, b) OPA,
and c) PPA.

Task-specificity map

We visualize the color coded map obtained using Task-
specificity analysis in Fig. 6. We observe that 2D represen-
tations are formed first in the early visual cortex hierarchy, fol-
lowed by semantic and 3D in deeper visual cortex.

Variance Partitioning Results

We combined RSA with variance partitioning (Nimon & Os-
wald, 2013) analysis to investigate how uniquely does the
most correlated 2D, 3D, and semantic trained DNNs explain
the responses of EVC, OPA and PPA, respectively. In vari-
ance partitioning approach, we can divide the unique and
shared variance contributed by all of its predictors. As shown
in Fig. 7a, 2D DNN explains 41.4% of EVC variance uniquely,
3D DNN explains 38.25% of OPA variance uniquely and se-
mantic DNN explains 28.17% of PPA variance uniquely.

Discussion

In this work, we sought to find functions of the different ar-
eas in visual cortex using DNNs optimized to perform tasks
on different aspects of visual perception. We demonstrated
using DNNs trained on different aspects of scene perception
that representation of EVC is similar to 2D DNNs, OPA is sim-
ilar to 3D DNNs and and PPA to semantic DNNs. Our results
suggest that OPA encodes information about 3D structure of
the scene while PPA encodes semantic information about the
scene. Our results are consistent with recent neuroimaging
findings (Henriksson, Mur, & Kriegeskorte, 2019). In our work
we were able to achieve such findings using a purely com-
putational approach. We believe our method based on using
task-specific trained DNNs opens new horizon for investigat-
ing functions of visual cortex and beyond.
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