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Abstract: 

A crucial component of brain function is to predict what 
will happen next. Although prediction is fundamental to 
brain function, we often study prediction of low-
dimensional abstract tasks, rather than real-world events. 
We developed a novel behavioural approach to measure 
the dynamics of “real-world” predictability using 
audiovisual movies and natural language processing. 
Participants were shown an 11-minute movie, where 
viewing was occasionally interrupted by requests to 
generate sentences predicting what would happen next. 
These written predictions were converted into sentence 
embeddings using the Universal Sentence Encoder. 
Using these embedding vectors, we generated a 
timecourse of “situation-level” predictability during 
movie watching, revealing periods associated with 
homogeneous (high-predictability) and heterogeneous 
predictions (low-predictability) across-participants. We 
then regressed this timecourse of predictability on the 
fMRI data of a separate group of participants who 
watched the same movie, uninterrupted, in the scanner. 
During periods of high predictability, we observed higher 
activity in regions of the default mode network, while 
during periods of low predictability we observed higher 
activity in sensory cortices, consistent with internal-
external models of cortical organization. Overall, we 
demonstrate the utility of natural language processing in 
quantifying fluctuations in real-world predictability.  
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Background 

Generating predictions about the world around us is 
thought to be a core feature of human brain function 
(Friston, Kilner, & Harrison, 2006). Our ability to 
generate predictions also fluctuates over time, with 
periods of high and low predictability. This fluctuation 
may have a purpose: during uncertain periods, we may 

be biased towards gathering new information for 
building internal models of our environment, while 
predictable periods may instead be associated with 
applying and refining existing models. Despite the 
prominence of this dynamic in our theoretical 
understanding of the mind/brain (e.g., Cohen, McClure, 
& Yu, 2007; Honey, Newman & Schapiro, 2017), we 
know little about how the human brain responds to 
fluctuations in real-world predictability. 

Current paradigms for studying predictability are mostly 
artificial. For example, fluctuations in predictability are 
often studied using variants of a gambling task 
(Lowenstein & Cohen, 2007). However, in a normal day, 
humans do not make a series of nearly identical 
choices, in rapid succession, based on otherwise 
meaningless cues and abstract rewards. Instead, we 
predict based on knowledge structures and schemas 
about the likely course of events. Moreover, in gambling 
tasks there is no a priori reason why the statistics of the 
task should change at a fast or slow timescale. Even in 
cases where the degree of predictability changes over 
the course of an experiment (e.g., drift designs), this 
rate is typically set by the experimenter and does not 
reflect the rates at which such changes occur in the real 
world. Thus, overall, the experimental control 
associated with such trial-based designs requires the 
imposition of low task dimensionality (e.g., two 
response options) and lacks the situational qualities 
and relevance to work knowledge that characterizes 
naturalistic contexts.   

We decided to forgo the strict experimental control of 
gambling tasks and instead sought to measure the 
dynamics of predictability using audiovisual movies of 
the kind seen in theatres. Movies are a microcosm of 
real life, and thus provide a powerful stimulus for 
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measuring real-world fluctuations in predictability. 
Furthermore, a growing body of work in human 
neuroimaging has demonstrated that situation 
comprehension is reflected in the degree to which 
responses in higher-order brain regions (e.g., default 
mode network; DMN) are shared across individuals 
during movie-viewing (Chen et al., 2016; 2017; for 
review, see: Hasson, Chen, Honey, 2015). This shared 
neural response is thought to be driven by viewers 
building a common “situation model” of the unfolding 
narrative (e.g., Baldassano et al., 2017; Yeshurun et al., 
2017); however, evidence supporting the critical link 
between ongoing activity in these regions and shared 
predictions is lacking.  

Overall, we hypothesize:   

1. Model testing during periods of high-predictability: 
Activity in higher-order brain regions (e.g., DMN) 
typically associated with situational comprehension will 
increase during periods of high-predictability, consistent 
with sampling from a shared internal predictive model. 

2. Model building during periods of low-predictability: 
Activity in low-level sensory regions will increase during 
periods of low-predictability, consistent with a bias 
towards sampling the external environment. 
 

Characterizing “Predictability” During 
Movie-Watching 

We developed a novel experimental procedure to 
measure fluctuations in real-world predictability (Figure 
1). 160 human participants watched an 11-minute clip 
of the popular film “Catch Me If You Can” (Spielberg, 
2002) online via Amazon’s Mechanical Turk platform. 
Movie-viewing was periodically interrupted (~1 time per 
minute) by presenting participants with a prompt asking 
them “What do you think will happen in the next 30 
seconds of this video?”. Participants were instructed to 
use full sentences to describe their predictions and 
were given the option to enter up to 5 separate 
predictions per interruption. Each prediction was 
followed by a confidence rating on a 1-7 point scale, 
providing a subjective estimate of how confident each 
participant   

 
 
 
 
 
 
 
 

Comprehension MC

“I believe that announcer narrator will 
continue talking and then somebody will 

try to guess who the fraudulent con-
artist was.”

“Tom Hanks continues to try and 
unsuccessfully communicate with the 

French police.”
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C. Group-level Predictability Timecourse

Figure 1. Schematic of overall experimental 
workflow, beginning with (A) the experimental 
paradigm where participants generate predictions, 
then (B) computing the mean cosine similarity 
across all predictions from all subjects who stopped 
at a specific timepoint, and (C) combining these 
estimates across all timepoints to generate a group-
level timecourse of predictability for the movie 
stimulus.  
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felt about each prediction. The onset of the interruptions 
was counterbalanced such that 20-25 participants 
generated predictions for every 10 seconds of the 
movie. After finishing the 11-minute video, participants 
additionally completed a multiple-choice 
comprehension test.  
 
The human-generated written predictions were then 
transformed into 512-dimensional vectors using the 
Universal Sentence Encoder (Cer et al., 2018). 
Sentences whose embedding vectors have high cosine 
similarity tend to have similar semantic meanings. 
Therefore, sentence embeddings provided an 
automated way to quantify the degree to which the 
predictions at a given timepoint, generated across the 
20-25 participants per stop, shared the same meaning. 
This measure of how semantically similar all predictions 
are at a given timepoint is our operational definition of 
predictability.  
 
An across-participant timecourse of predictability was 
calculated by averaging the pairwise estimates of 
cosine similarity across all predictions generated for 
each timepoint. Similarly, a confidence timecourse was 
calculated for confidence ratings by averaging 
participant-centered confidence ratings across all 
predictions for each timepoint. Only participants who 
accurately responded to all comprehension questions 
were included in this analysis. The group-level 
predictability and confidence timecourses were 
positively correlated (r = .34, p = .005), so that 
participants were more confident at moments when 
their predictions agreed with those of other participants.  
 
 

Regressing “Predictability” On The Brain 
How do brain dynamics change at moments of high and 
low predictability in a complex real-world narrative? A 
separate group of 23 human participants (19-36 years 
of age; 14 males, 9 females) watched the same movie 
clip during fMRI scanning. The predictability timecourse 
was then interpolated to match the sampling rate of the 
brain data (TR = 1.5s) and regressed onto each voxel 
of the preprocessed brain using AFNI’s 3dDeconvolve 
(Cox, 1996). Consistent with our hypotheses, activity in 
the higher-order regions of the DMN increased during 
periods of time where across-participant predictions 
were more consistent (i.e., high-predictability) (Figure 2, 
voxelwise FDR, q < 0.05). Moreover, activity in early 
auditory cortex and visual cortex was increased for 
moments at which predictions were more 
heterogeneous across participants (i.e., at moments of 
low predictability).  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions & Future Directions 
Overall, we report the utility of natural language 
processing techniques, specifically sentence 
embeddings, in capturing fluctuations in predictability 
derived during movie-watching. This experimental 
paradigm is powerful because it allows us to measure 
predictability at the scale of situation models – reflecting 
the relationships between entities, actions and 
outcomes (Zwaan & Radvansky, 1998), and “specifying 
the gist of the spatial, temporal and causal relationships 
that apply within a particular context” (Ranganath & 
Ritchey, 2012). Predictability in this sense is a high-
dimensional construct and thus may carry external 
validity beyond the laboratory.  
 
We observed a bias towards internally-oriented, high 
order cortical regions of the default mode network 
during periods of high predictability. This is consistent 
with previous work suggesting the DMN supports 
situation models of an unfolding naturalistic narrative 
(e.g., Chen et al., 2017; Baldassano et al., 2017; 
Yeshurun et al., 2017), and these data provide a critical 
link between activity in these regions and explicit 
participant-generated predictions. Conversely, 
increased activity in sensory cortices during periods of 
low-predictability is consistent with models of the brain 

Figure 2. Results of voxel-wise regression of group-
level predictability timecourse on the fMRI data of a 
separate sample (n = 23) who watched the same 
movie in the scanner. Warm-coloured regions show 
a positive relationship between activity and 
predictability, and include regions of the DMN. Cool-
coloured regions show a negative relationship with 
predictability and are centered on visual and 
auditory cortex. False-discovery rate (FDR), q < 
0.05 
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that emphasize switching between internal and external 
modes depending on environmental demands (e.g, 
Honey, Newman, & Schapiro, 2017).  
 
Beyond these interesting possibilities, many more open 
questions remain, some of which we hope to address in 
the near future: 
 

1. How reliable is this pattern across different 
movies? 

2. How does predictability relate to measures of 
inter-subject correlation (ISC)? 

3. How does prediction accuracy compare to 
predictability as measured here (i.e., reliability 
across participants)?  

4. Does real-world predictability change across 
vs. within event boundaries? 

5. Does information-seeking behavior during 
movie-viewing differ during periods of high vs. 
low predictability? 

 

Acknowledgments 

We acknowledge the support of the Alfred P. Sloan 
Foundation (Fellowship to JC).  
 

References  

Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., 
Hasson. U., & Norman, K. A. (2017) Discovering 
Event Structure in Continuous Narrative Perception 
and Memory. Neuron, 95, 709-721.e5.  

Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., St. 
John, R., Constant, N., Guajardo-Cespedes, M., 
Yuan, S., Tar, C., Sung, Y-H., Strope, B. & Kurzweil, 
R. (2018) Universal Sentence Encoder. arXiv 
Available at: http://arxiv.org/abs/1803.11175. 

Chen, J., Honey, C. J., Simony, E., Arcaro, M.J., 
Norman, K. A., & Hasson, U. (2016) Accessing Real-
Life Episodic Information from Minutes versus Hours 
Earlier Modulates Hippocampal and High-Order 
Cortical Dynamics. Cerebral Cortex, 26, 3428–3441. 

Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., 
Norman, K. A., & Hasson, U. (2017) Shared 
memories reveal shared structure in neural activity 
across individuals. Nature Neuroscience, 20, 115–
125. 

Cohen, J. D., McClure, S. M., Yu, A. J. (2007) Should I 
stay or should I go? How the human brain manages 
the trade-off between exploitation and exploration. 

Philosophical Transactions of the Royal Society B: 
Biological Sciences, 362, 933–942. 

Cox, R. W. (1996) AFNI: software for analysis and 
visualization of functional magnetic resonance 
neuroimages. Computational Biomedical Research, 
29, 162–173. 

Friston, K., Kilner, J., & Harrison, L. (2006) A free 
energy principle for the brain. Journal of Physiology 
Paris, 100, 70–87. 

Hasson, U., Chen, J., & Honey, C. J. (2015) 
Hierarchical process memory: Memory as an integral 
component of information processing. Trends in 
Cognitive Sciences, 19, 304–313.  

Honey, C. J., Newman, E. L., & Schapiro, A. C. (2017) 
Switching between internal and external modes: A 
multiscale learning principle. Network Neuroscience, 
1, 339–356. 

Ranganath, C., & Ritchey, M.  (2012) Two corticial 
systems for memory-guided behaviour. Nature 
Reviews: Neuroscience, 13, 713-726.  

Spielberg, S. (Producer). (2012). Catch Me If You Can 
[Motion Picture]. United States: Dreamworks.  

Zwaan, R. A., & Radvansky G. A. (1998) Situation 
models in language comprehension and memory. 
Psychological Bulletin, 123, 162–185. 

 

 
 

183


