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Abstract 
Humans are distinctly skilled at cooperation. To 

successfully engage with others they apply Theory of 
Mind (ToM). Here, we investigate neuro-computational 
mechanisms underlying ToM during real-time dyadic 
coordination in a probabilistic social decision game. To 
effectively coordinate participants have to represent the 
surrounding they interacted in and simultaneously 
simulate their partner’s representation of the world. 
These cognitive computations are formalized with a 
decision framework that combines decision-making 
under uncertainty with intentional models of other 
agents. Using model-based EEG analyses, we identify 
oscillatory signals related to errors experienced by 
players when own expectations towards the 
surroundings are violated and simulations of errors 
experienced by the partner when the partner’s 
predictions fail.   Consistent with previous studies, we 
find positive correlations between power in frontal delta 
and theta oscillations and experienced errors. Most 
strikingly, these signals are also found in relation to 
simulations of the partner’s error, at times when 
participants themselves experience no prediction error 
themselves. These findings unveil the neural signature of 
a crucial computational component of the mental model 
of a partner and demonstrate that the brain recruits 

similar mechanisms for simulation the decisions of 
others as for computing one’s own decision. 
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Background and aim 
Humans are experts in cooperating with others. 

Cooperation is the capacity to act in accordance with 
the percepts, goals, and beliefs of others to facilitate 
own and other’s gain equitably. Cognitively, it requires 
Theory of Mind (ToM), i.e. the ability to estimate and 
represent others’ mental states and predict rational 
behavior based on these mental states. To successfully 
cooperate, humans have to combine the predictions of 
a partner’s behavior with their knowledge of the world 
and act according to the combined requirements of the 
interactive situation. Here, we set out to investigate the 
neuro-computational mechanisms allowing humans to 
cooperate by formalizing the models humans build of 
others’ mental states and the world and identifying 
neural signals related to updating of these models. 
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To examine the processes underlying cooperative 
behavior in a truly interactive setting we developed a 
decision-making task that requires cooperative choices 
on probabilistic and occasionally changing options. 
Action planning is complicated by the facts that 
participants receive only noisy observations of the 
underlying task structure, which on top can change 
unpredictably. A cooperative reward structure 
incentivizes coordination. Additionally, one player has 
more knowledge about the task situation than the other. 
The asymmetry of knowledge between two agents 
resembles the situation in the classic false-belief-task 
(Wimmer & Perner, 1983), in which the (all-knowing) 
participant has to realize that the girl in the story has a 
false belief about the environment and therefore makes 
an incorrect choice. In our setup, the less informed 
player has a false belief and the informed player a 
correct belief about the world. As the joint reward is 
maximal when choices are coordinated, divergent 
knowledge prompts participants to observe and learn 
about the surroundings and model and track the 
partner’s belief about the world. To act optimally, they 
need to combine their world knowledge and their model 
of the partner’s mental state in a single valuation 
process.  

To gain access to the private cognitive operations that 
allow humans to coordinate in a complex setting, we 
model behavioral data in the context of the I-POMDP 
framework (Gmytrasiewicz & Doshi, 2005). I-PODMPs 
extend single-agent action planning in an uncertain 
environment to the interactive domain by including 
intentional models of other agents that themselves 
engage in action planning. These models of others may 
themselves include models of the original agent 
allowing the capture of recursive reasoning processes 
humans can engage in during strategic interaction.  

Building on the cognitive model we examine 
participants’ neural signals recorded with EEG in a 
model-based approach. We aim at identifying neural 
signals related to the updating of players’ models of the 
world as well as updating processes related to 
simulating the partner’s model of the world.  

Methods and results 

Task Details 
The task used here extends the concept of the classic 

false belief task to the interactive domain. We therefore 
refer to it as the “Interactive False Belief Task” (IFBT). 
In the IFBT two players choose between two options 
("left" or "right") for probabilistic rewards. One option 
has a high probability for a high reward (10), the other   
a high probability for a low reward (5). Using trial and 
error participants find out whether the high reward is on 
the left or on the right. When both partners obtain the 

same individual outcome, they are rewarded by a ten-
fold increase of their individual outcomes. If individual 
outcomes differ, they receive the nominal individual 
outcomes. Their own reward distribution and the 
partner’s action are unknown to the players, but have to 
be inferred form the received outcome. The partner’s 
reward distribution is openly presented to the players at 
the beginning of each trial. Prior to their own choice, 
participants have to predict the partner’s action. In the 
displayed reward matrices (Figure 1), the initial setting 
is shown on the left. Both players need to choose option 
“A” to receive the individual high outcome. Thereby, the 
probability of receiving the maximum reward of 100/100 
is highest. However, due to the probabilistic choice-
outcome relation, all other outcomes are also possible. 
After a few trials, one player’s (here: Player y’s) reward 
contingencies are reversed, i.e. this player's high option 
moves from left to right or vice versa, while the partner's 
reward contingencies remain the same. This player 
remains uninformed about the change and is therefore 
referred to as the “Learner”. As Learners are ignorant to 
reversals, they hold a false belief about the reward 
structure of the task. The partner is informed about the 
contingency reversal, hence we call this player 
“Teacher”. For ease of reference we will refer to the 
Teacher as “she” and the Learner as “he”. This is 
unrelated to the participants' gender, as we tested an 
equal number of male and female participants and all 
participants played both roles in exclusively same-
gender dyads (total N = 50, 25 female). Taking the 
Learner’s false belief into account the Teacher has to 
choose the less valuable option “B” at reversal. The 
most likely ensuing reward of 50/50 signals the Learner 
that his reward contingencies have reversed. After a 
period of stable coordination, reversals repeat. 
Throughout the game, reversals are unpredictable and 
players are randomly assorted to the roles of Teacher 
and Learner. 

Teacher and Learner predictions and choices 
The Learner’s main task in the IFBT is to detect and 

react to changes in the reward-contingencies. The 
Teacher is fully informed about the change. Her goal is 
to “communicate” these reversals through her choices. 
She has to react to the Learner’s decisions at the 
reversal and to his choice adaptation after the reversal. 

Figure 1| Pre- and post-reversal reward matrices 
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Players’ predictions about the partner’s choices are 
shown in Figure 2A, players’ own choices in Figure2B: 
The Learner detects reversals and gradually shifts his 
choices after a reversal. During the reversal, the 
Teacher correctly predicts that the Learner stays with 
his previous choice, but switches her own choice to “B”, 
the Teacher’s individually less rewarding choice option, 
which is, however, still the best option given the reversal 
in the Learner’s reward contingencies. In post reversal 
trials, the Teacher accurately predicts the partner’s 
choice curve (purple prediction curve in (A) and green 
choice curve in (B)) and matches the Learner’s choice 
switching by returning to her pre-reversal choice at the 
same rate (purple choice curve in (B)). These results 
strongly suggest, that participants actively engage in 
mentalizing to solve the task.  

Modelling interactive decisions 
In the IFBT outcomes are probabilistically associated 

with the participants’ choice options. The goal of the 
task is to maximize the joint outcome. To achieve this 
goal participants have to generate beliefs about which 
option is currently the best. Based on their actions and 
observations of the resulting joint outcome they can 
update this belief distribution. After a reversal, the 
Learner does not know that the reward situation has 
changed. His belief is therefore false. The Teacher is 
aware of the change. Furthermore, she knows that the 
Learner does not know about the reversal. Thereby, she 
can infer the Learner’s false belief, correctly predict the 
Learner’s (wrong) action, and accommodate for it by 
switching her own choice.  Previous studies examining 
ToM in interactive tasks did not include uncertainty 
about the surrounding (e.g. Hill et al., 2017; Yoshida, 
Dolan, & Friston, 2008). In these studies, representing 
another persons’ beliefs is unnecessary, as in a fully 
and perfectly observable world, others’ beliefs should 
be identical to one’s own belief. In the current study, 
however, participants interacted in a highly uncertain 
environment. Therefore, we need to address the 
attribution of beliefs to others, a core component of 
ToM.  

Single agent action planning under uncertainty is well 
captured by partially observable Markov Decision 

Processes (POMDPs) (Kaelbling, Littman, & 
Cassandra, 1998). The innovative element of POMDPs 
is that the agent maintains a belief about the world. 
Beliefs are represented by probability distributions over 
all possible discrete states of a world. At each time step 
the agent’s belief is updated with a Bayesian learning 
rule. In the context of the IFBT, states are specified by 
the location of the high reward option (possible states 
are “High Left (HL)” and “High Right (HR)”). Here, we 
extend the problem to the multi-agent domain.  

To capture humans mentalizing during interaction in 
an uncertain environment, we apply Interactive 
POMDPs (I-POMDPs) (Gmytrasiewicz & Doshi, 2005). 
In contrast to single agent POMDPs, I-POMDPs contain 
an agent’s belief about the states of the world and a 
belief about the mental states of the other agent, which 
is the other agent's belief about the states of the world. 
For the IFBT this means that agents form a belief about 
the location of their own and their partner's high option, 
and about the partner's belief about the distribution of 
rewards. As in the single agent model, beliefs are 
updated at each time step. In the multi-agent 
framework, the belief about the other’s mental state is 
updated by simulating the partner’s learning process. 
These core features of the framework make it an ideal 
candidate for modeling participants’ behavior in the 
IFBT and access the underlying critical belief 
computations.  

We fitted parametrized I-POMDP models to 
behavioral data from the IFBT and found that I-
POMDPs predict the Teacher’s and the Learner’s 
actions with high accuracy (compare model predictions 
(dotes lines) and participants average behavior (solid 
black lines) in Figure 3). From the fitted I-POMDPs 
players’ beliefs about their respective reward 
contingencies (HL/HR) and their belief about the 
partner’s belief are computed. Players own beliefs are 
represented by the solid colored lines in Figure 3C and 
(D), their representations of the partner’s belief in (A) 

Figure 3| Model predictions and participants’ actions  

Figure 2| Teacher and Learner predictions and choices 
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and (B). The Teacher’s individual reward distribution 
remains constant throughout the peri-reversal period 
and extracted beliefs show that the Teacher correctly 
represents the reward structure (C). Before a reversal, 
also the Learner correctly represents the state of the 
task (D). However, at reversal, the reward distribution 
changes but the Learner’s belief stays constant, i.e. 
becomes false. In the post-reversal period, his belief 
starts to shift reflecting the gradual adaptation to the 
change in reward contingencies. The Teacher’s belief 
about the Learner’s belief matches the Learner’s own 
beliefs almost perfectly (compare solid purple and 
green line in (A) and (D)). This shows that Teachers 
accurately represent their partner’s mental state.  

Model-based EEG analyses 
From extracted beliefs we computed players’ trial-

wise own expectations towards outcomes as well as the 
Teacher’s simulation of the Learner’s expectations 
towards outcomes. Based on these expectations we 
deduced two different prediction errors (PEs): An 
experienced PE, capturing the surprise experienced by 
players in response to observed outcomes, and a 
simulated PE that represents the Teacher’s simulation 
of the Learner’s surprise. At and after reversals, the 
Learner’s belief about the task situation is incorrect, 
hence he experiences strong PEs. The Teacher on the 
other hand correctly represents the reward structure 
and therefore experiences small PEs when outcomes 
are presented. However, in addition to experienced 
PEs, the Teacher simulates the Learner’s surprise 
about outcomes. In line with the Learner’s experienced 
PE, the Teacher’s simulates large PEs at and after 
reversal. Using single trial regression analyses, we 
related experienced and simulated PEs to power of 
oscillatory neural signals. In line with previous research 

(Cohen & Cavanagh, 2011), the Learner’s experienced 
PEs correlate positively with power in the delta and 
theta band (left half of Figure 4). In addition, we find that 
also the Teacher’s simulated PE positively correlates 
with low frequency signals similar to the Learner’s 
experienced PE response (right half of Figure 4). These 
findings suggest that simulating a partner’s dynamic 
mental state during coordinated decision making is 
instantiated by similar neural mechanisms as engaging 
in them oneself.  

 Discussion 
Successful cooperation requires coordination of joint 

actions. Here we provide behavioral, computational and 
neural evidence that humans represent their partners 
as rational intentional agents and dynamically model 
their mental states. Using the I-POMDP framework we 
can formalize and quantitatively estimate these Theory 
of Mind processes. Our modeling findings suggests that 
humans incorporated mental models of their partners 
into their own model of the world and use it to guide 
coherent decision making. Further, we show that 
modelling a partner’s decision process recruits similar 
neural mechanism as own action planning and decision 
making.  
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