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Abstract
Living in a world where any object bears features in many
dimensions, it is crucial but also challenging for humans
to figure out what dimensions are relevant for rewards.
How do humans learn from trial and error to obtain re-
wards when multiple (or an unknown number of) dimen-
sions need to be taken into account, and feedback is
probabilistic? In this work, we designed a paradigm
tailored to study such complex but naturalistic scenar-
ios. In the experiment, participants configured three-
dimensional stimuli by selecting features for each di-
mension and received probabilistic feedbacks. Partici-
pants demonstrated learning, selecting more rewarding
features over the course of a game. To investigate their
learning process, we compared three classes of learning
models: a Bayesian model, reinforcement learning mod-
els and serial hypothesis testing models, and found evi-
dence supporting the latter. This suggests that when fac-
ing complex learning scenarios with a great number of
possible rules, people tend to actively test one hypothe-
sis at a time, as opposed to evaluating all the possibilities
or learning values of all features incrementally.

Keywords: reinforcement learning; representation learning;
serial hypothesis testing

Introduction
When interacting with a multidimensional environment, it is
crucial to figure out what dimensions are relevant for obtaining
rewards. For example, when purchasing coffee beans, a col-
lection of decisions needs to be made including the brand, the
packaging, the origin of the beans, the level they are roasted,
etc. Among these dimensions, some determine the flavor of
the coffee and how much a person likes it (e.g. the origin
and the roast level), while others (e.g. the brand and pack-
aging) may matter less. An inexperienced coffee drinker can
be clueless when facing these decisions, but after a few times
trying out different combinations, they will hopefully figure out
what dimensions are relevant for obtaining a tasty coffee and
which are not. Learning about relevance is useful as it helps
the agent make better decisions, as well as allocate limited
resources to the useful information (e.g. buying the cheaper
brand if it does not affect the flavor).

Finding the dimensions relevant for a task, however, can be
challenging: the outcomes may be stochastic, so learning re-
quires aggregating over multiple experiences; the number of

relevant dimensions is often unknown, leaving learners uncer-
tain as to whether they have fully learned. Few studies have
considered both complexities (but see (Choung et al., 2017;
Duncan et al., 2018)). Instead, in most multidimensional re-
inforcement learning (RL) tasks (Niv et al., 2015; Marković
et al., 2015; Wunderlich et al., 2011), only one dimension of
a stimulus is relevant for reward, and participants are explic-
itly informed so; in category learning tasks, rules often involve
multiple dimensions, but they are often deterministic by design
(Ballard et al., 2017; Mack et al., 2016). Therefore, here we
developed a “build-your-own-stimulus” task, aiming to study
probabilistic reward learning about multiple (or even an un-
known number of) relevant dimensions.

Experiment
The “build-your-own-stimulus” task. In this task, stimuli
are characterized by features in three dimensions: color ({red,
green, blue}), shape ({square, circle, triangle}) and texture
{plaid, dots, waves}. In each game, a subset of the three di-
mensions is relevant for reward; being a relevant dimension
means that one feature within this dimension makes a stimu-
lus more rewarding.

To earn rewards and learn what are the most rewarding fea-
tures in the relevant dimensions, we asked participants to con-
figure stimuli by choosing what features to use in each dimen-
sion (Figure 1). They could also choose to not select features
on any of the dimensions; in that case, a random feature would
be selected by the computer. The participant would then see
the resulting stimulus and receive probabilistic reward feed-
back (one or zero points): the more rewarding features the
stimulus contained, the higher the probability of reward. Par-
ticipants’ goal was to earn as many points as possible over
the course of each game.

Each game had 1-3 relevant dimensions (corresponding
to 1D, 2D and 3D-relevant conditions), and this number was
either known or unknown to participants (“known” and “un-
known” conditions), resulting in six game types in total.

Compared to the multidimensional RL tasks and catego-
rization tasks in the literature where stimuli (i.e. the combina-
tion of features) are often pre-determined and where it is hard
to isolate the participants’ preference over single features, this
task design enables us to directly probe participants’ prefer-
ence (or lack thereof) in each of the three dimensions.

Participants. 27 participants recruited through Amazon Me-
chanical Turk each played all six types of games (3 games
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Figure 1: The build-your-own-stimulus task. The partici-
pant builds a stimulus by choosing one feature out of three for
each of three dimensions (features chosen are marked with
black squares); they can also decide not to choose a feature
for any of the dimensions. After hitting “done”, the stimulus
shows up on the screen, with random features selected for
any dimension that the participant did not make a choice on
(in this example, “circle” is randomly selected for the color di-
mension). Then the reward feedback is shown on the screen.

of each type, 30 trials per game). Participants were told that
there could be one, two or three dimensions that are important
for reward, and were informed about the reward probabilities:
if one dimension is relevant, they will get a point 80% of the
time if their stimulus contains the rewarding feature, and 20%
of the time otherwise; if two dimensions are relevant, they will
get a point 80%, 50% or 20% of the time, if the stimulus con-
tains two, one or zero rewarding features; if three dimensions
are relevant, they will get a point 80%, 60%, 40% or 20% of the
time for three, two, one or zero rewarding features. In “known”
games, they were instructed on the number of relevant dimen-
sions. Participants were never told which dimensions were
relevant or which features were more rewarding.

Learning performance. Across all six game types, partici-
pants’ performance improved over the course of a game (Fig.
2). Games were harder (participants were less able to learn all
the rewarding features) as the number of relevant dimensions
increased; knowing the number helped performance when
three dimensions were relevant (p= .002, repeated measures
ANOVA), but not for one or two relevant dimensions.

Models
In multidimensional RL tasks, people have been shown to
learn via trial-and-error to identify relevant dimensions, and
to gradually focus their attention onto the rewarding features
in those dimensions (Niv et al., 2015; Marković et al., 2015;
Wunderlich et al., 2011). In a series of studies with one rel-
evant dimension (Niv et al., 2015; Leong et al., 2017), an RL
model that updates values of chosen features based on re-

Figure 2: Learning curves by game type. The number of
rewarding features in the configured stimuli over the course of
1D, 2D and 3D-relevant games; red and blue curves represent
the “known” and “unknown” conditions, respectively. Shaded
areas represent 1 s.e.m. across participants. Dashed lines
represent chance level for that type of game.

ward prediction errors and decays the values of unchosen fea-
tures was found to fit best to the participants’ behavior, com-
pared to alternative models such as Bayesian inference and
serial hypothesis testing. In categorization tasks, in contrast,
people seem to use a Bayesian rule-learning strategy, evaluat-
ing the probability of all possible rules via Bayesian inference,
with a prior belief favoring simpler rules (Ballard et al., 2017).

Here we ask how people learn about what is relevant for
reward in a more complex scenario, and whether and how
their strategies are affected by (1) the number of relevant di-
mensions, and (2) whether they know the number. Inspired
by prior work, we consider three classes of models: Bayesian
rule-learning, reinforcement learning (RL) and serial hypothe-
sis testing (SHT).

The Bayesian rule-learning model
This model maintains a probabilistic belief distribution over
all possible rules. A rule specifies the relevant dimension(s)
and the corresponding rewarding feature(s). For “unknown”
games, there are 63 possible rules in total; for “known” games,
it reduces to 9, 27 and 27 for 1D, 2D and 3D-relevant condi-
tions, respectively. At the start of a game, the belief distri-
bution is initialized uniformly. After each trial, it is updated
according to Bayes’ rule:

P(h|a1:t ,r1:t) ∝ P(rt |h,at)P(h|a1:t−1,r1:t−1), (1)

where h represents one hypothesis (i.e. rule), at and rt are
the choice and outcome on trial t, and the likelihood term
P(rt |h,at) is given by the instructions.

The Bayesian model predicts choices by calculating the ex-
pected reward for each choice given the belief distribution:

ER(a) = ∑
h

P(h)P(r|h,a), (2)

The expected values are then put through a softmax function
to determine the choice probability, with an additional cost
term proportional to the number of features selected by the
participant (representing the motor cost of selecting a feature):

P(a) =
eβ(ER(a)−c·∑i δi(a))

∑a′ eβ(ER(a′)−c·∑i δi(a′))
, (3)
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where δi(a) is an indicator function for whether or not a feature
was selected on the ith-dimension for choice a. The Bayesian
model thus has two free parameters: β and c.

Reinforcement learning models
The feature RL model. This model learns the value of nine
features ( fi, j, where i indexes dimension and j indexes fea-
ture in that dimension) using a Rescorla-Wagner update rule,

Vt( fi, j) =Vt−1( fi, j)+η(rt −Vt−1( fi, j)), (4)

with one learning rate (η = ηs) for features the participant
selects and another (η = ηr) for randomly selected features.
Features not in the current stimulus are not updated.

The expected reward for each choice a is then the sum of
its feature values:

ER(a) = ∑
i

V ( fi,ai) (5)

where a = (a1,a2,a3), with ai being the choice on the i-th
dimension. If no feature is chosen on a dimension (ai = null),
the average of the three features on that dimension is used:

V ( fi,ai=null) =
1
3

∑ j V ( fi, j). The choice is then determined in

the same way as in the Bayesian model (Equation 3). This
model has four free parameters: ηs, ηr, β and c.

The feature RL with decay model. This model is identical
to the feature RL model, except with an additional decay pa-
rameter d that multiplies the values of features not in the cur-
rent stimulus:

Vt( fi, j) = d ·Vt−1( fi, j), if j 6= si
t (6)

with si
t indexing the feature on dimension i of the current stim-

ulus. This model has five free parameters: ηs, ηr, β, c and
d.

Serial hypothesis testing models
In serial hypothesis testing (SHT) models, we assume the par-
ticipant’s choice reflects the current hypothesis they are test-
ing, i.e. any change in choice marks a switch in the hypothesis
tested. In addition to the 63 hypotheses mentioned before, we
also include a hypothesis with no identified rewarding features,
corresponding to not selecting any feature on any dimension.

On each trial, the participant decides whether to stay with
the current hypothesis or switch to a different one, based on
the estimated reward probability of the current hypothesis. As-
suming a uniform Dirichlet prior, this is equivalent to count-
ing how many times the participant was rewarded since they
started testing the current hypothesis. The estimated reward
probability is then compared to a soft threshold θ to determine
the stay probability, with the same cost proportional to number
of features selected:

Pr(stay) =
1

1+ e−βstay( reward count +1
trial count+2 −θ)−cstay·∑i δi(at−1)

(7)

The switch probability is 1−Pr(stay). The two SHT models
differ on their switch policies.

The random-switch SHT model. Here, the switch probabil-
ity is uniformly distributed to all choices other than the current
one, with a penalty for selecting more features. Therefore the
choice policy is

P(at) =

Pr(stay), if at = at−1

(1−Pr(stay)) e−cswitch·∑i δi(at )

∑a′ 6=at−1
e−cswitch ·∑i δi(a′)

, if at 6= at−1

(8)
This model has four free parameters: θ, βstay, cstay and cswitch.

The value-based SHT with reset model. Instead of ran-
domly switching to any other hypothesis, this model favors re-
cently rewarded features. It maintains a set of feature values
using the Rescorla-Wagner rule (as in Equation 4), and calcu-
lates the expected reward for each alternative hypothesis as
in Equation 5. The choice probability for at 6= at−1 is thus:

P(at) = (1−Pr(stay))
eβswitch·ER(at )−cswitch·∑i δi(at )

∑a′ 6=at−1 eβswitch·ER(a′)−cswitch·∑i δi(a′)

(9)
After switching hypotheses, feature values are reset to zero.
This model has seven free parameters: θ, ηs, ηr, βstay, cstay,
βswitch and cswitch.

Model fitting and model comparison
We fit the models using maximum likelihood estimation with
the minimize function (L-BFGS-B algorithm) in Python pack-
age scipy.optimize with 10 random starting points.

We performed 3-fold stratified cross-validation: each fold of
data contains six games (one game of each type); we fit the
models to two folds of data and calculated the log likelihood
on the third fold using the fit parameters. The log likelihoods
of all three folds were summed to get the cross-validated log
likelihood. This procedure was repeated 10 times and results
were averaged to reduce noise.

Model comparison results
Across the three classes of models, the serial hypothesis test-
ing models fit participants’ behavior best, followed by RL mod-
els, and then the Bayesian rule-learning model (Fig 3A, B).

In contrast to the RL and SHT models that do not utilize
task instructions, the Bayesian model exploits the complete
knowledge of the task (including the game conditions and the
reward probabilities). However, it did poorly in predicting par-
ticipants’ choices. This was potentially due to the large hy-
pothesis space (up to 63 hypotheses), making it implausible
that participants actually performed exact Bayesian inference.

The RL models, in contrast, take advantage of the facts that
different dimensions are independent and the reward proba-
bilities are additive. The models reduce both the storage and
computational loads by learning nine feature values. The fea-
ture RL model predicted data better than the Bayesian model;
additionally, the decay mechanism greatly helped model fits,
consistent with findings in a related task on the 1D-known con-
dition (Niv et al., 2015). The decay mechanism means that
experiences in the far past will not affect the current choice,
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which Niv et al. (2015) interpreted as “forgetting”. It can also
be seen as a way to reduce the storage load: the values of
features not considered for a while are decayed to zero, and
do not need to be memorized by the agent.

Extending this idea of only using recent history to the ex-
treme gives rise to the SHT models: when deciding whether to
stay with the current hypothesis or to switch, the agent only uti-
lizes evidence within the current hypothesis window and dis-
cards all previous experiences. The SHT models fit at least as
well as the feature RL with decay model, even with a random-
switch policy. The model fits further improved when we al-
lowed the SHT model to learn a set of feature values and use
them to guide the switching of hypotheses. Interestingly, the
value-based SHT with reset model requires no less memory
and computation compared to the feature RL model, but fit be-
havior better. This suggests that the poor fit of the feature RL
model was not due to limits on storing and updating all fea-
ture values, but rather due to participants’ learning strategies
being closer to actively testing one hypothesis at a time, com-
pared to learning feature values in parallel. The feature RL
with decay model accounted for data relatively well potentially
because it “mimics” the SHT by favoring recent experiences.

Broken down for the six game conditions, the best model
(value-based SHT with reset) could best predict 1D-relevant
games, and less so for 2D or 3D-relevant games (Figure 3C).
Additionally, its advantage over the feature RL with decay
model was most prominent in 1D-relevant games, especially
1D-known games (Figure 3D). Together, these results indi-
cate that participants’ strategies were more hypothesis-based
when the game was easier (i.e. fewer rewarding features to
search for), and less so when the game was harder; in fact,
the evidence for serial hypothesis testing was similar to that
for incremental learning in 3D-known games.

Conclusions and Future Directions
We developed a novel task to investigate how people learn
about relevance in a multidimensional environment, and found
evidence for a serial hypothesis testing strategy.

Future directions include (1) deriving the optimal strategy
for this task: participants were able to perform above chance-
level but were still far from ceiling performance; knowing the
optimal strategy will help understand and evaluate human per-
formance; (2) developing models that incorporate task instruc-
tions: apart from the Bayesian model, all other models did not
make use of task instructions (e.g. game condition, reward
probabilities), and were thus unable to explain differences in
behavior under different game conditions (e.g. Figure 2C).
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