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Abstract: 

The continuous development of computational models 
drives understanding of cognitive mechanisms and their 
neurobiological underpinnings. Here we extend HDDM, 
an open source python toolbox for Bayesian hierarchical 
parameter estimation of the drift diffusion model, to also 
support reinforcement learning (RL). Moreover, our 
extension affords the ability to model instrumental 
learning paradigms in which the choice rule is replaced 
with the DDM (RLDDM), thus account for evolution of 
both choices and RT distributions with learning. RLDDM 
simultaneously estimates parameters of learning and 
dynamic decision processes by assuming decisions are 
made by accumulating evidence of the difference in 
expected rewards between choice options until reaching 
a decision threshold. Here we validate the model with a 
parameter recovery test and illustrate the usability of the 
toolbox, with posterior predictive checks, by fitting pre-
collected data on an instrumental learning task.  
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Background 

Traditional reinforcement learning (RL) models 
(Rescorla & Wagner, 1972) typically assume static 
decision processes, e.g. softmax (Luce, 1959), that do 
not capture the dynamics of choice processes. The drift 
diffusion model (DDM; Ratcliff, 1978), on the other 
hand, typically assumes static decision variables, i.e. 
stimuli are modeled with the same drift rate across 
trials. The reinforcement learning drift diffusion model 
(RLDDM; Pedersen, Frank & Biele, 2017) combines 
dynamic decision variables from RL and dynamic 
choice process from DDM by assuming trial-by-trial drift 
rate that depends on the difference in expected 
rewards, which are updated on each trial by a rate of 
the prediction error dependent on the learning rate. The 
potential benefit of the RLDDM is thus to gain a better 
insight into decision processes in instrumental learning 
by also accounting for speed of decision making. 
Indeed, recent studies (Ballard & McClure, 2019; 
Shahar et al., 2019) have shown that modeling reaction 

time in reinforcement learning improves identifiability of 
learning parameters. 

We have extended the HDDM toolbox (Wiecki, Sofer 
& Frank, 2013) with a module that allows users to run 
hierarchical Bayesian RLDDM models on their dataset. 
An online tutorial illustrates how to use the toolbox. 
Here we show that the model can recover parameters 
and illustrate its potential benefits by analyzing pre-
collected data from a two-alternative instrumental 
learning task.  

Methods 
The RLDDM assumes expected rewards (Q) for an 

option i on trial t is updated according to a delta learning 
rule: 

 
Qt = Qt-1 + a(Rewardt – Qt-1), 
 
where the learning rate α weights the rate of learning 

from the prediction error (reward - expected reward). 
Further, the model assumes trial-by-trial drift rates (v) 
can be modeled as the scaled difference in expected 
rewards for the two options (a and b): 

 
vt = (Qat – Qbt) * scaling, 
 
where scaling captures sensitivity to rewards. Lastly, 

combined reaction time and choice on trial t is modeled 
with the wiener first passage time distribution (wfpt) with 
parameters for decision threshold (A), non-decision 
time (T) and drift rate (vt):  

 
wfpt(choicet+rtt, A, T, vt) 

Parameter Recovery 

To validate that the RLDDM can recover parameter 
values we generated 81 synthetic datasets with 
different combinations of values for each decision and 
learning parameter. Each dataset contained 50 
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subjects performing 70 trials in each of three conditions 
with varying levels of probability of reward for the best 
and worst option. 

Figure 1 illustrates that the model successfully 
recovered the values used to generate the synthetic 
datasets. 

 

 

Figure 1: Parameter recovery across decision and 
learning parameters. Simulated group values on x-axis 

and estimated group estimates on y-axis. Colors 
identify the different values used to generate data for 

each parameter. 

Results 

The toolbox is created to allow users to easily run and 
validate models. Here we show an example by applying 
the model to a pre-collected dataset (Frank et al., 2007) 
on the probabilistic selection task (PST). The PST 
includes three conditions with varying levels of reward 
probability for the best and worst option. 

We performed posterior predictive checks, which 
assess the validity of a model by generating data with 
estimated parameter values. One hundred datasets 
were generated by sampling parameter values from the 
posterior distribution. Figure 2 shows the ability of the 
model to recreate observed choice and reaction time 
patterns across learning, separately for the difficulty 
conditions. 
 

 

Figure 2: Posterior predictive check of choice and 
reaction across learning and difficulty conditions. a) 

Mean observed (blue) and simulated (orange) 
response in favor of best option across trials. Error 

bars for generated data represent 90% highest density 
interval of 100 generated datasets with samples 

extracted from the posterior distribution of parameters. 
b) Observed (blue) and simulated (orange) reaction 

time distributions separated for best and worst option 
responses as positive and negative RTs, respectively. 

Cond represents the probability of reward (in 
percentage) for the best and worst option, 

respectively. 

Conclusion 

The RLDDM-toolbox could be a helpful tool for 
analyzing instrumental learning data and has the 
potential to be useful given the recent interest in 
accounting for reaction time in reinforcement learning 
models. 
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