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Abstract
The brain predicts the timing of forthcoming events to 
optimize responses to them. Such predictions are driven 
by both prior expectations on the likely timing of 
stimulus occurrence and the information conveyed by 
the passage of time (hazard function). Events that 
violate expectations cause surprise and often induce 
updating of prior beliefs. Here we combined a Bayesian 
computational approach with electroencephalography 
(EEG) to investigate the neural dynamics associated 
with updating of temporal expectations in the human 
brain. Moreover, since belief updating is usually highly 
correlated with surprise, participants performed a 
temporal foreperiod task that was specifically designed 
for differentiating between these two processes. The 
results confirmed that updating and surprise can be
functionally distinguished at the EEG level. We isolated
two dissociable P3 subcomponents that specifically 
index the two processes, providing new insights on these 
event-related potential (ERP) components and their 
Bayesian interpretation. To the best of our knowledge, 
the present study delineates ERP correlates of belief 
updating and surprise about the timing of events for the 
first time.
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updating; surprise; P3 ERP

Introduction
The ability to predict the likely moment at which an event
will occur is critical to optimize many cognitive 

processes that range from perception to action selection. 
Temporal predictions can be formalized in terms of the 
hazard function, which refers to the conditional probability 
that an event will occur given it has not yet occurred
(Janssen & Shadlen, 2005; Nobre, Correa, & Coull, 2007).
Temporal predictions thus rely on both prior expectations 
about the timing of events and the information inherent in
the passage of time. 

Previous reaction time (RT) studies - employing
temporal foreperiods (FP) between warning signals and 
target stimuli - demonstrated that humans track the 
temporal hazard of target occurrence (Bueti et al., 2010; 
Herbst et al., 2018; Meindertsma et al., 2018). However, it
is still unclear how prior temporal expectations are formed
and revised by the brain. To fill this gap, we used a 
Bayesian computational approach to investigate EEG
correlates of updating temporal expectations. Moreover, 
given that updating usually occurs in the presence of 
surprising events (O’Reilly et al., 2013), we also sought to 
disentangle EEG correlates of updating from those 
associated with surprise. 

Following the EEG literature about Bayesian belief 
updating (Kopp, 2008; Mars et al., 2008, Kolossa, Kopp, & 
Fingscheidt, 2015), we predicted to differentiate updating 
and surprise at late, P3-like components on the present FP 
task.

Methods
Experimental Design
Twenty-six participants performed a FP task (Fig. 1) while 
their EEG activity was recorded from 64 electrodes.
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Participants had to respond to target onsets that were 
separated from a neutral warning signal by variable FP. 
Most targets (80% of 790 trials; predictable trials) were 
predictable since they appeared after FP drawn from a 
Gaussian distribution with constant mean and standard 
deviation during a block of trials. However, FP means and 
standard deviations changed abruptly between blocks of 
trials. The 73 blocks were not temporally separated, and
participants were explicitly instructed that a change in 
target color signaled the beginning of a new block. On few 
trials (20%; uniform trials), interspersed with the other
trials, the target appeared after a FP drawn from a uniform 
distribution ranging from 250 to 2500 ms. Importantly, 
uniform targets were always white, signaling that the 
current trial was not igniting a new block (update trial). In 
sum, although update and uniform trials were both 
surprising, surprise was distinguishable from updating by
target color.

Figure 1: Paradigm and schematic depiction of the 
experimental approach. (A) Example of a trial. (B) Plot of 
FP duration over 30 trials. In most of the trials (i.e., 80%), 
target onsets were predictable since they occurred after FP

(colored dots) drawn from a Gaussian distribution (panel C) 
whose mean and standard deviation were kept constant 

within a block. On 20% of trials, targets occurred after FP 
(white dots) extracted from a uniform distribution. (C)
Distributions of FP duration in three exemplary blocks.

Ideal Bayesian Observer
To quantify updating and surprise, we developed a 
computational model (adapted from O’Reilly et al., 2013) 
that described beliefs about FP of an ideal Bayesian 
observer, and how such beliefs were trial-wise updated. 
After each observation, the model estimated the posterior 
probability of parameters μ and σ of the Gaussian 
distribution underlying normal FPs:

(1)

Updating was differently computed according to the trial
type.

After predictable trials, the posterior (Eq. 1) was updated
using Bayes’ rule as:

(2)

After update trials, the change of color explicitly 
signaled the start of a new distribution. For this reason, the 
prior in update trials was blanked with a uniform 
distribution:

( (3)

According to the task instructions, no updating occurred 
after uniform trials, such that the posterior probability over 
parameter space at trial n was derived from the prior 
without modifications.

The model then translated the estimates of the parameters 
μ and σ into probability density functions over time. 
Specifically, the prior over time for a subsequent trial n + 1 
was derived from the posterior over parameter space on 
trial n as follows:

(4)

where p(predictablenb+1) and p(uniformnb+1 + updatenb+1)
represent the probability of incurring, respectively, in a 
predictable or in a uniform/update trial at the next trial of 
the current block (nb indicates the trial number within a 
block, which differs from n that indicates trial number 
referred to the whole task).

From the model (Fig. 2), we extracted trial-wise
information-theoretic measures of updating and surprise 
(Baldi & Itti, 2010). Updating at trial n was formalized as 
the Kullback-Leibler divergence (DKL; Fig. 2B) from prior 
to posterior beliefs:

(5)

Since during the trial the prior probability of target onset 
changed as a function of the elapse of time (Janssen & 
Shadlen, 2005), we quantified surprise at trial n as the 
Shannon information (IS; Fig. 2C) associated with the value 
of the hazard function at target onset:

(6)

where was the cumulative probability 
.

…

433



Figure 2: Ideal Bayesian observer and information-theoretic 
measures. All panels show the data from 100 trials. Dot 

colors indicate trial types as reported in the legend. (A) Plot 
of the state of the ideal Bayesian observer. The y axis 

shows FP duration. The dashed line indicates the mean of 
the generative Gaussian distribution from which update and 

predictable FPs were drawn. Dots indicate the true FP 
duration on each trial. Shading indicates the estimated 

probability of FP duration given the prior, p(FP|prior). (B, 
C) Model-based information-theoretic measures of 

updating (DKL) and surprise (IS).

Results
Behavioral analysis
Log-transformed RTs were analyzed by means of a linear 
mixed model (LMM) in which IS and DKL were used as 
explanatory variables along with the rank-order of a trial
(TRIAL), and log-RT at the preceding trial (PRECEDING RT)
to control for temporal trial-to-trial dependencies. 
Backward elimination of non-significant  effects  resulted
in a model specified as the following Wilkinson-notation 
formula:

log(RT) ~ TRIAL + PRECEDING RT + IS * DKL

+ (TRIAL + PRECEDING RT + IS | ID) (7)

Figure 3: Interaction plot for log-transformed RTs. The 
plot shows the effect of surprise (IS) for update and no-

update (i.e., uniform and predictable) trials.

EEG analysis
First-level (subject-specific) analysis was performed using 
the Unfold toolbox (www.unfoldtoolbox.org) in MATLAB, 
which performs regression-based EEG analysis by 
integrating a mass-univariate approach with linear 
deconvolution. For the analysis we specified three events: 
cue onset, target onset and button press. Target onsets were,
then, modeled according to the following Wilkinson-
notation formula:

EEG ~ IS + DKL (8)

Group-level analysis was performed using the ept-TFCE 
toolbox (https://github.com/Mensen/ept_TFCE-matlab) in 
MATLAB. Estimated DKL and IS parameters in the data 
space channels × epoch time points (0 - 1000 ms) were 
tested using threshold-free cluster enhancement (TFCE)
one-sample t-test (number of permutations = 200000, 
alpha-level = .001). TFCE analysis (Fig. 4) showed that: (1) 
DKL triggered a first series of early and fast deflections 
followed by a P3-like modulation; (2) IS was associated 
with an early positive posterior modulation followed by a 
P3-like component, which emerged earlier and was less 
sustained compared to DKL.

Conclusions
We identified EEG correlates elicited by updating of prior 
temporal expectations, and we showed that updating could 
be distinguished from surprise at the electrophysiological
level. These findings are relevant for Bayesian modeling of 
temporal expectations. They are also of importance for the 
functional interpretation of the P3, one of the most widely 
used EEG indicators of information processing at the neural 
level.

434



Figure 4: Mass univariate EEG results for Updating (DKL; left panels) and Surprise (IS; right panels). Raster diagrams show
significant effects according to TFCE analysis. Rectangles in warm and cold colors indicate electrodes/time points 

significantly modulated. Trace plots depict the average t values pooled over the electrodes Cz, CP1, CPz, CP2, Pz. The 
topoplots show the t values averaged in the time windows from 550 to 650 ms for DKL, and from 450 to 550 ms for IS.
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