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Abstract: 

The hippocampal formation is critical for spatial and 
relational inference in navigation problems. The neural 
code underlying such inference is factorized in the 
entorhinal cortex (EC) and conjunctive in the 
hippocampus (HC). A factorized code implies a separate 
encoding of sensory and relational knowledge, which can 
be flexibly conjoined to an object representation that 
reflects both sensory and relational properties. We 
hypothesize that the same neural mechanisms are 
employed in complex decision-making and compositional 
planning, which requires the flexible generalization of 
knowledge to novel instances. We tested this hypothesis 
in a task where subjects had to construct novel visual 
objects based on a set of basic visual building blocks and 
relations. We found behavioral evidence that subjects 
form a hierarchical representation of this task that allows 
them to flexibly apply compositional knowledge to novel 
stimuli. Using fMRI adaption, we found evidence that the 
construction of novel objects depends on compositional 
neural representations in HC-EC and medial prefrontal 
cortex (mPFC). Further, we found that these structures 
also encoded purely relational information, indicative of a 
factorized representation. These results suggest that 
compositional neural representations in the hippocampal 
formation and prefrontal cortex enable the generalization 
of abstract knowledge to novel stimuli during visual 
construction.  
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Introduction 

The hippocampal formation encodes a ‘cognitive map’ 
that allows animals to navigate successfully (Behrens et 
al., 2018; Tolman, 1948). A cognitive map provides an 
efficient neural representation of knowledge about the 
structure of the world that enables flexible and 
generalizable behavior. In the context of spatial 
navigation, the instantiation of a cognitive map has been 
associated with place cells in the HC (O’keefe & Nadel, 
1978) and grid cells in the EC (Hafting, Fyhn, Molden, 
Moser, & Moser, 2005). It has been suggested that place 
cells encode individual states within a task, such as a 
particular location in a maze, whereas grid cells encode 
relational information about those states, such as likely 
transitions between locations (Momennejad et al., 2017; 
Stachenfeld, Botvinick, & Gershman, 2016). Recently, 
the same neural architecture has been implied in non-
spatial navigation based on a cognitive map of task 
structure (Aronov, Nevers, & Tank, 2017; 
Constantinescu, O’Reilly, & Behrens, 2016; Garvert, 
Dolan, & Behrens, 2017). 

A key principle of functional organization within the 
hippocampal-entorhinal system is a factorized and 
conjunctive neural code (Behrens et al., 2018; Manns & 
Eichenbaum, 2006), which can be organized 
hierarchically (Stachenfeld et al., 2016). This implies that 
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EC encodes a separate or factorized representation of 
sensory and relational components of a stimulus, 
whereas HC encodes its conjunction and thus forms a 
high-dimensional representation of a stimulus within a 
specific structure. 

We hypothesized that the same neural mechanisms 
are at play during complex decision-making and flexible 
planning behavior. A central aspect of flexible behavior 
is the generalization of abstract knowledge to novel 
instances. For example, if we would offer you some tea 
jelly for dessert, there is a fair chance that you would be 
able to express your preference for this food item even 
though you have probably never tasted it before. 
Importantly, previous work has shown that the 
construction of such novel goods relies on neural 
representations in the HC and mPFC (Barron, Dolan, & 
Behrens, 2013). 

In the present study, we investigated the neural 
representations that underlie such compositional 
reasoning and the generalization of abstract knowledge 
to novel instances, called combinatorial generalization 
(Battaglia et al., 2018). Our key hypothesis was that the 
generalization of knowledge critically depends on 
compositional neural representations, where basic 
building blocks and relational knowledge can be flexibly 
combined to form novel conjunctive representations 
(Behrens et al., 2018; Battaglia et al., 2018). 

Results 

To investigate the neural representations underlying 
compositional planning, we developed a task in which 
subjects learned to construct visual objects using a 
toolkit of building blocks and relations. As illustrated in 
Figure 1A, subjects were trained to combine different 
building blocks by putting them on top or beside each 
other, without worrying about the physical stability of the 
resulting object.   This task allowed us to probe whether 
a compositional neural representation in terms of a 
cognitive map of task structure would emerge after 
training, based on which a given visual object can be 
decomposed into its constituent building blocks and 
relations. 

To test whether compositional neural representations 
can be organized hierarchically, we added an additional 
layer to the task. During early training, subjects were 
repeatedly tasked to build specific visual objects that 
were combinations of two basic building blocks. Later 
on, they were tasked to build larger visual objects, which 
often could be decomposed into two of the smaller visual 
objects from early training. Thus, although never 
instructed explicitly, subjects were exposed to a set of 
‘compositional building blocks’, which allowed an 
efficient decomposition of larger visual objects (see 
bottom panel of Figure 1A). Analysis of participants' 
behavior revealed that when they had to construct large 
visual objects, they relied on ‘compositional building 

blocks’ more often than predicted by chance (Figure 1B). 
These findings suggest that the participants indeed 
formed a hierarchical representation of this task. 

 

Figure 1: A) Subjects were trained to use basic and 
compositional building blocks and combine them via 

‘ontopness’ and ‘besideness’ to construct visual 
objects. B) Subjects used (red) ‘compositional building 
blocks’ more often than predicted by chance (blue). C) 

Stimulus categories during scanning. 

To probe the neural representation underlying this 
task, we employed an fMRI adaption paradigm after two 
days of behavioral training. fMRI adaption is a measure 
for the similarity of neural representations, based on the 
notion that a succession of two similar stimuli elicits 
higher adaption (i.e. a reduced BOLD response for the 
second stimulus) compared to a succession of dissimilar 
stimuli (Barron, Garvert, & Behrens, 2016). In 
consequence, one can use such ‘cross-stimulus 
adaption’ measures to probe the representational 
similarity of different stimuli.   

In the scanner, subjects passively viewed novel visual 
objects. These objects were either a combination of two 
basic or two compositional building blocks connected via 
‘on top-ness’ or ‘besideness’, or one basic or 
compositional building block alone (see Figure 1C). 
Participants  were tasked to think about the construction 
of these objects. To ensure that subjects engaged in this 
task, ten percent of stimuli were followed by a ‘catch 
trial’, in which subjects were asked about the 
construction of the previous object. 

First, we asked whether this visual construction task 
depended on neural representations in the hippocampal 
formation and prefrontal cortex. To test this, we 
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analyzed fMRI adaption for individual building blocks 
followed by compounds that contained these particular 
building block (or vice versa). The key comparison was 
between conditions where compound AB was preceded 
by building block A (or vice versa) compared to building 
block C. Higher adaption for AB when preceded by A 
compared to when preceded by C would reflect a neural 
representation for building blocks within a compound, 
and thus a compositional representation necessary for 
constructing a novel visual object.  

This analysis revealed effects in the HC underlying 
this visual construction task. Specifically, we found 
strong basic building block-compound adaption in the 
medial temporal lobe (Figure 2A). In a region of interest 
analysis1, we found a bilateral effect for basic building 
block-compound adaption in HC extending into EC; 
right: p=0.001, tpeak=5.95 [16 -38 -6]; p=0.003, tpeak=5.44 
[20 -8 -12] and left: p=0.004, tpeak=5.26 [-26 -30 -16]; 
p=0.006, tpeak=5.13 [-24 2 -16]; p=0.031, tpeak=4.39 [-12 
-14 -24]; p=0.044, tpeak=4.23 [-8 -44 8]. We also found a 
whole brain effect for this analysis in a large cluster 
containing both left and right HC, p<0.001, tpeak=5.95 [16 
-38-6], cluster size = 87972.   

We also found a small-volume corrected effect for 
compositional building block-compound adaption in the 
bilateral hippocampus; right: p=0.045, tpeak=4.27 [20 -30 
-6] and left: p=0.005, tpeak=5.25 [-36 -24 -20]; p=0.036, 
tpeak=4.34 [-12 -46 2]. More exploratory whole brain 
analysis revealed an effect for compositional building 
block-compound adaption in mPFC, p<0.001, tpeak=6.10 
[-2 24 22], cluster size = 1822 (Figure 2B). To control for 
adaption of basic building blocks within a compositional 
building block in this contrast (see bottom panel of 
Figure 1A), we used basic compounds (i.e. a 
combination of two basic building blocks) that contained 
two building blocks that were also part of the 
compositional compound as a control condition (see 
bottom panel of Figure 2B). However, we found the 
same effects when using compositional building blocks 
that were not part of the compound (i.e. C preceding AB) 
as a control condition. 

We also found basic (not shown) and compositional 
(Figure 2B) adaptation effects in higher visual and 
parietal cortex. 

Taken together, these results suggest that this visual 
construction paradigm relied on compositional neural 
representations in the hippocampal formation and 
mPFC. 

                                                           
1 All small volume corrected analyses are based on 

histological masks combining the HC subiculum and EC for the 
left or right hemisphere, and are reported on a cluster-forming 

 

Figure 2: A) Effects for basic building block-

compound adaption. Masked for HC and EC using a 
histological mask (Eickhoff et al., 2005) B) Whole-brain 

effects for compositional building block-compound 
adaption. Effects thresholded at T=3.5. 

If the neural representation underlying flexible 
generalization in this task is truly compositional, this 
predicts a neural space that encodes objects purely in 
terms of their relational properties. In the simplest case, 
this implies representing objects in terms of their graph 
structure, i.e. whether two (basic or compositional) 
building blocks were combined with ‘on-topness’ or 
‘besideness’. Based on previous work suggesting that 
neurons in the hippocampal formation, particularly EC, 
encode relations or transitions between states 
(Constantinescu et al., 2016; Garvert et al., 2017), we 
hypothesized to find such a purely relational 
representation in the HC-EC system. 

To test this, we probed for fMRI adaption that reflects 
a purely relational representation, namely contrasting 
same relation transitions (i.e. an object constructed with 
ontopness/besideness preceded by an object with the 
same relation) with different relation transitions. In this 
analysis, we found a small-volume corrected effect in left 
anterior EC for basic compounds, p=0.052, tpeak=4.17 [-
16 4 -30] (Figure 3A). We did not detect an effect in right 
HC-EC or any other whole brain effects for basic 
compound relation adaption, or any effects for 
compositional compound relation adaptation. 

Further, we tested the same question in a second 
analysis probing for adaption ‘within’ a compositional 
compound. As displayed in Figure 1A, compositional 
compounds are constructed with two compositional 
building blocks, which themselves consist of two basic 
building blocks. Importantly, these two compositional 
building blocks can be built with the same or different 
relations. Consequently, we expect stronger 

threshold of p<0.001, family-wise error corrected at the peak 
level. 

2 All whole brain level analyses are reported at p<0.001, 

family-wise error corrected on the cluster level. 
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(parametric) adaption for a higher proportion of ‘same’ 
relation solutions within a compositional compound. We 
tested this hypothesis and found a small-volume 
corrected effect in the HC that reflected ‘within object’ 
relational adaption; right p=0.028, tpeak=4.56 [24 -36 -4] 
and left: p=0.039, tpeak=4.37 [-20 -36 -4]. On a whole-
brain level, we also detected parametric effects in 
parietal cortex, p<0.001, tpeak=5.90 [-12 -36 44], cluster 
size = 4247; callosal body, p-0.007, tpeak=5.65 [4 -14 24], 
cluster size = 348; inferior frontal gyrus, p=0.008, 
tpeak=5.07 [-36 34 6], cluster size = 333; and mPFC 
p=0.012, tpeak=4.50 [0 46 2], cluster size = 308. 

 

Figure 3: A) Adaption effect in anterior EC for basic 
‘same relation’ compound transitions (light blue). 
Overlaid is a previously reported effect in EC for 

relational navigation in conceptual space 
(Constantinescu et al., 2016, pink). Effects thresholded 
at T=2.3. B) Parametric adaption effect in HC reflecting 

the proportion of ‘same relation’ solutions in 
compositional compounds (green), overlaid on Figure 

2A. Effects thresholded at T=3.5. All effects masked for 
HC and EC. 

Conclusion 

We developed a paradigm in which subjects had to use 
abstract compositional knowledge to construct novel 
visual objects. We found evidence for such 
compositional neural representations in the 
hippocampal formation and mPFC. The latter effect was 
specifically pronounced for compositional building 
blocks within larger compounds, suggestive of a 
hierarchical organization in line with behavioral 
measures. Further, we found evidence suggesting that 
objects were encoded purely in terms of their relational 
properties in the hippocampal formation and mPFC. 
Taken together, our results suggest that compositional 
representations in the HC-EC system and mPFC 
underlie the flexible construction of novel stimuli, which 
is a central aspect of flexible decision-making and 
compositional planning. 
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