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Abstract
While neural network research typically focuses on mod-
els that learn to perform well within the context of a sin-
gle task, models that operate in the real world are often
required to learn multiple tasks or tasks that change un-
der different contexts. Furthermore, in the real world the
learning signal for each of these tasks usually arrives in
sequence, rather than simultaneously in a batch, as in the
deep learning setting. We propose a method to infer when
the task context has changed when learning from a con-
tinual datastream, and to adjust the model’s learning ac-
cordingly to prevent interference between learned tasks.
We show how to automatically infer the context of a previ-
ously learned task for use in the future (e.g. during model
evaluation). These preliminary results show that learning
autonomously in a continually changing environment is
possible in neural network models. This learning is better
suited to how data naturally arrives in a real world envi-
ronment.
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Introduction
Data naturally arrives as an ordered stream. Events in the
future depend on events in the past. Furthermore, this depen-
dence can exist at multiple timescales simultaneously. For ex-
ample, a camera can provide a persistent video stream which
reveals changes both from day to night and from summer to
winter. This perspective of data as a stream (i.e datastream)
is in stark contrast to how learning currently operates in neu-
ral network models. During training, data is artificially shuffled
and arrives as an unordered set (i.e dataset). This destructive
operation is done to satisfy the statistical assumption that the
data is independent and identically distributed (i.i.d.). How-
ever, this lack of ordering also assumes the information of in-
terest only exists within the timescale of individual elements
in the dataset. Consequently, this dramatically increases the
difficulty of learning larger timescale dependencies, and in the

continual learning setting can lead to a problem termed catas-
trophic forgetting, which refers to the tendency of neural net-
works to forget an old task suddenly when presented with data
from a new task.

In order to relax the constraints imposed by the i.i.d. as-
sumption, we propose a modification to neural network learn-
ing that accounts for the distribution shift that occurs in a
datastream. By treating model parameters more like mem-
ories rather than static variables after training, we can signifi-
cantly reduce the problem of catastrophic forgetting.

Instead of distilling the information of a datastream into a
single set of model parameters, we propose storing the non-
stationary knowledge as distinct memories which can poten-
tially be consolidated in the future. Our method avoids prema-
turely consolidating temporal information as it arrives which
can hinder learning information in the future (Schaul, Borsa,
Modayil, & Pascanu, 2019).

The importance of algorithms that can learn from data arriv-
ing in their natural order is especially important in the problem
of continual learning. Much of the previous work in contin-
ual learning relies on the assumption that datastreams are
broken into discrete ’tasks’, and furthermore, that the points
of transition between tasks are known. Datastreams in the
real world often consist of more gradual, continuous changes,
and the transitions between tasks, or contexts, are not given,
but must be inferred. In neurobiology, the basal ganglia is
believed to modulate task-switching (A. G. Collins & Frank,
2013). Inspired by this ability of humans to effortlessly infer
task changes without explicit supervision, we relax the as-
sumption that an oracle provides information about context
changes and instead infer them automatically from the data.

Related work

Inferring tasks automatically

While most work in continual learning assumes that the task
transitions are known, there have been a few approaches to
inferring them instead. Kirkpatrick et al. (2017) use a genera-
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Figure 1: Permuted MNIST task. The first task is the original
MNIST classification dataset (left) and the second task (right)
is generated by applying a random permuation to the pixels in
each image of the dataset. Subsequent tasks are generated
similarly, by applying a different random permutation.

tive model of the input which estimates the context probabili-
ties conditioned on the current observation. This requires the
learning of a new generative model for each task as it arrives.
While our proposed approach achieves the same outcome, it
is much simpler and the implementation is built into the model
rather than requiring a separate system for task inference.

Achille et al. (2018) introduce an approach that is similar
to ours, by developing an ‘atypicality score’ measured from a
generative model of the environment to infer the context. They
measure the divergence of the behavior of stochastic latent
units from their prior. Our approach is different in that it is
able to infer task context for classification without doing any
generative modelling of the data.

Neural network superposition and standardization
loss

Our own previous work (Cheung, Terekhov, Chen, Agrawal,
& Olshausen, 2019) controlled when memories (parameters)
are stored and retrieved by encoding knowledge of the distri-
bution shift. Here, we propose using the standardization loss
described by J. Collins, Ballé, and Shlens (2019) to automati-
cally detect this distribution shift.

Method

Task

We consider the permuted MNIST task from Goodfellow,
Mirza, Xiao, Courville, and Bengio (2013). We note that this
is not a very realistic model of natural distribution shift (tasks
transitions are very discrete and there is no overlap in input
features) but nonetheless it is a commonly studied toy task
in the continual learning literature (Kirkpatrick et al., 2017;
Zenke, Poole, & Ganguli, 2017).

Neural network superposition

Traditionally, models have been viewed as a parameterized
function fit to data. Much of the neural network literature
focuses on training these parameters in a stationary setting
where all data is drawn from a single distribution. In contrast,
Cheung et al. (2019) treat the parameters of neural network
models more akin to a memory. To handle multiple data distri-
butions, they propose treating the network parameters much
like an associative memory. Context information is used to re-
call distribution specific parameters from this memory. Much
like the memories stored in a Hopfield network, these task
specific parameters exist superposed in the memory. To im-

plement superposition, the standard linear transformation in
networks y =Wx is augmented with a context C:

y =WCx (1)

For computational efficiency, the context is parameterized
as C = diag(c) where c is a context vector.

Standardization loss

J. Collins et al. (2019) proposed a method to accelerate neural
network training by using a loss-based normalization instead
of explicit normalization techniques such as batch normaliza-
tion (Ioffe & Szegedy, 2015).

For a given layer of activations xxx (xxx ∈ Rb×n for a fully con-
nected network, where b refers to the batch dimension and
n to the number of hidden units in that layer) before the non-
linearity, batch normalization ensures that the activations are
zero mean and unit variance by normalizing activations across
the batch dimension.

Rather than explicitly normalizing activations like batch nor-
malization, J. Collins et al. (2019) propose an auxiliary loss
that encourages the activations at each layer to be close to a
standard Normal distribution. This is achieved minimizing the
following KL-divergence:

Ls = DKL(N (µ,σ)||N (0,I)) =
1
2

n

∑
i=0

(µ2
i +σ

2
i − log(o2

i )−1)

where µi and σ2
i are calculated the same as in batch normal-

ization.
Batch normalization will force this KL-divergence measure

to be zero for any batch of inputs. Standardization loss in com-
parison converts this divergence into a useful measure of how
far from standard normal the current activation distribution is,
which can be useful in the continual learning setting. The di-
vergence measure between the standard normal distribution
and the current activation distribution can be thought of as a
measure of information gain. From this perspective, we can
interpret the standard normal distribution as a prior and the
current activation distribution as a posterior. The standardiza-
tion loss measures how ‘surprising’ the current input distribu-
tion is for the model. This surprise corresponds to information
that can be learned from the current data that is not already
present in the model parameters. If the current distribution
of data provides new information for the model, this serves as
an indicator to allocate space in the model parameters to learn
that information.

Training details

We train a 2-layer fully connected ReLU network with 2000
units in each layer. The network is trained with a learning rate
of 0.0001 using the RMSProp optimizer. Every 2000 steps,
the training task changes. For the context vector c we use
binary superposition vectors as in Cheung et al. (2019).

To train our model, we minimize the following loss:

563



0 2500 5000 7500 10000 12500 15000 17500 20000
steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

st
an

da
rd

iz
at

io
n 

lo
ss

Figure 2: Networks trained with standardization loss incur a
spike in the loss every time the task changes, denoted by the
gray dotted line. This spike can be used as a cue for distribu-
tion shift.

L = Lcls +λLs

where Lcls is cross entropy classification loss for the per-
muted MNIST task and Ls is the standardization loss (λ =
0.001).

Standardization loss encourages activations to be zero
mean unit variance over a given training dataset - thus when
the data changes, standardization loss will drastically increase
(Figure 2). For a given context vector, we keep track of an up-
per bound standardization loss value, that is, a scalar value
that if the standardization loss exceeds, we assume that unfa-
miliar data is being presented. We find that setting the upper
bound to be 2× the minimum standardization loss value seen
so far (for a given context) works well. Each context vector
has a corresponding upper bound.

When selecting a new context, we calculate the standard-
ization loss value of the current minibatch for all of the exist-
ing contexts so far, and choose the context with the minimum
standardization loss that doesn’t exceed that context’s given
upper bound. This allows us to re-use old contexts if we see
old data again some time in the future. If no context vector is
suitable, we use a new context vector entirely.

Results
We train on 10 permuted MNIST tasks and track the accuracy
on the first training task as a way to measure catastrophic for-
getting. Ideally, for a network that doesn’t forget, the accuracy
on the first training task should remain unaffected as more
tasks are introduced. For a network without knowledge of task
changes, we expect the accuracy to decrease as additional
tasks are added, due to forgetting. To test this, we compare
our method to a network with ground truth context information
from an oracle, and a network that only uses a single context
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Figure 3: Accuracy on first permuted MNIST task as a func-
tion of number of training steps. Every 2000 steps, the training
task changes (denoted by gray dotted line). Networks trained
with ground truth knowledge about task, and therefore con-
text changes (green, overlapped with by blue) and our method
for inferring context changes (blue) are able to retain perfor-
mance on the first task even as more tasks are added. Net-
works trained without knowledge of task information that use
the same context vector across all tasks (red) quickly forget
the first task. Error bars calculated across 5 runs with differ-
ent random seeds.

across the training of 10 different tasks. As seen in Figure 3,
our method is able to correctly infer task changes just as well
as if it was given oracle information, and the model that uses
a single context suffers from catastrophic forgetting.

Our method is not only able to pick a new context when an
unseen tasks is presented, it is also able to correctly recall
old contexts used for previous training tasks that are revisited.
To demonstrate this, we train on the same 10 tasks and then
present the learned model with the 10 tasks again. We find
that the model is perfectly able to recall the correct context
vector for all tasks (Figure 4).

Discussion and future work

In this work we demonstrated that augmenting a neural net-
work model with a simple standardization loss can allow for
automatic inference of context changes. This approach re-
quires less overhead than existing approaches which often
involve entirely separate systems to infer the context. Addi-
tionally, the standardization loss was introduced as a method
to accelerate training of neural networks without using explicit
normalization techniques like batch normalization (J. Collins
et al., 2019), so it may serve a dual purpose in addition to
being useful for continual learning.

While we only considered 10 training tasks in this work, it is
important to experiment more with a larger number of training
tasks or tasks that may have overlap in structure, where inter-
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Figure 4: Our model is able to correctly infer the context for
tasks it was previously trained on when they are seen again.
Confusion matrix showing that for the 10 permuted MNIST
tasks, our model is able to perfectly the previous contexts used
for each task.

ference between tasks may play more of a role and inferring
the correct context may be more difficult.

In this work, contexts are fixed to their initialized values and
simply selected using standardization loss. Given that the
contexts are differentiable and trainable like any other param-
eter in a neural network, learning to generate new contexts
from previous ones is a promising future direction. New con-
texts which are functions of previous ones make it possible to
performance knowledge transfer from the past to the future. A
method to decide what knowledge should be transferred is an
open research direction. One possibility is to use variational
inference and optimize the standardization loss to generate
new contexts.

Incorporating an episodic memory would make it easier in
learning how to combine contexts in a retrospective manner.
For example, if two tasks require overlapping knowledge, an
episodic memory makes it possible to compare these two ex-
amples which arrived at different points in time during learn-
ing.

Here, context selection is based on the input image. But a
broader notion of contexts is possible. For example, contexts
can potentially denote multiple tasks which are applied to the
same input image (e.g. classification and segmentation). We
hope to expand how contexts are used and allow the selection
process to be dependent on other sources of information be-
yond the input. In future work, we believe this will enable what
we propose here to apply to more realistic continual learning
settings like navigation in an open world.
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Collins, J., Ballé, J., & Shlens, J. (2019). Accelerat-
ing training of deep neural networks with a standard-
ization loss. CoRR, abs/1903.00925. Retrieved from
http://arxiv.org/abs/1903.00925

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., & Bengio,
Y. (2013). An empirical investigation of catastrophic for-
getting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd international conference
on machine learning (icml) (p. 448-456).

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness,
J., Desjardins, G., Rusu, A. A., . . . Hadsell, R.
(2017). Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy
of Sciences, 114(13), 3521–3526. Retrieved from
https://www.pnas.org/content/114/13/3521 doi:
10.1073/pnas.1611835114

Schaul, T., Borsa, D., Modayil, J., & Pascanu, R. (2019). Ray
interference: a source of plateaus in deep reinforcement
learning. arXiv preprint arXiv:1904.11455.

Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning
through synaptic intelligence. In Proceedings of the 34th in-
ternational conference on machine learning-volume 70 (pp.
3987–3995).

565


