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Abstract: 

Why does the human brain contain cortical regions 
specialized for the perception of some stimulus 
categories (e.g., faces), but not others (e.g., cars)? And 
why might functional specialization be a good design 
strategy for brains in the first place? Here, we used deep 
convolutional neural networks (CNNs) to test whether 
models optimized to recognize faces and objects require 
functional segregation for each task. First, we trained 
two separate CNNs with the same architecture to 
categorize either faces or objects. Unsurprisingly, the 
face-trained CNN performed worse on object 
categorization than the object-trained CNN and vice 
versa, demonstrating that the features optimized for 
each task differ from one another. Second, following the 
method of Kell et al (2018), we trained a family of dual-
task CNNs on both tasks, asking how many layers can be 
shared before performance declines. Somewhat 
surprisingly, even the dual-task CNN that shared all 
layers performed nearly as well as the separate 
networks. This result is consistent with two hypotheses: 
1) face and object recognition may be performed well by 
using a shared pool of common features or 2) the shared 
network has learned “hidden” functional specialization. 
In ongoing work, we are seeking to disambiguate these 
two hypotheses. 

Keywords: functional specificity; object processing; face 
processing; deep neural networks; dual-task training 

Introduction 

Over the last 25 years, multiple regions of the human 
cortex have been identified that are engaged in specific 
components of perception and cognition. For example, 
the fusiform face area (FFA; Kanwisher, McDermott, & 
Chun, 1997) responds selectively to faces, the 
parahippocampal place area to scenes (PPA; Epstein & 
Kanwisher, 1998) and the extrastriate body area to 
images of bodies (EBA; Downing, Jiang, Shuman, & 
Kanwisher, 2001). The existence of these specialized 
regions raises two fundamental questions: i) Why might 
functional specialization be a good design strategy for 
brains?, and ii) Why are some perceptual and cognitive 
functions processed by specialized cortical modules 
while others apparently are not (e.g., cars or spiders; 
Downing, Chan, Peelen, Dodds, & Kanwisher, 2006)? 

Deep convolutional neural networks (CNNs) offer a 
new approach for addressing these longstanding 
questions (Kell & McDermott, 2019). CNNs have been 
successfully used as models for visual processing in 
monkeys and humans (e.g., Khaligh-Razavi & 
Kriegeskorte, 2014; Yamins et al., 2014), as well as for 
auditory processing in humans (Kell, Yamins, Shook, 
Norman-Haignere, & McDermott, 2018). In this latter 
study, the authors introduced a novel method to assess 
the extent to which representations at different layers in 

570

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



CNNs can be shared across multiple tasks. The intuition 
behind this approach is that different tasks may employ 
an initial set of common, domain-general features, 
followed by branching into subsequent task-specific 
pathways. This approach was applied to two auditory 
tasks: music genre classification and word recognition. 
First, for each task, the authors trained a separate CNN 
—one on only the music task, and another on only the 
word task—to measure the performance attainable by 
networks that were free to learn task-specific features 
at all stages of processing. Second, they trained a 
single network on both tasks to measure how much task 
performance was impaired by being forced to share 
features across tasks. Third, they asked how many 
layers could be shared before task performance 
declined. They then trained “branched” networks, which 
shared the initial layers across both tasks before 
branching into two task-specific pathways, at all 
possible branch points (see Fig. 1 for examples). For 
musical genre and word recognition, the authors found 
that the dual-task network could share early (but not 
late) layers without impairing performance in each task. 
Here, we use this approach on category-specific visual 
processing to ask whether and at which branching point 
face and object processing performance declines 
relative to the fully separate networks that are each 
trained on only one task. 

 

Figure 1: Examples of (A) separate networks trained 
on one task each, and (B) fully-shared and (C) 

“branched” dual-task architectures trained on two 
tasks simultaneously.  

Methods 

To address these questions, we trained CNNs based on 
the VGG16 architecture (Simonyan & Zisserman, 
2015). This architecture has been successfully trained 
on object categorization and face identity recognition 
(Parkhi, Vedaldi, & Zisserman, 2015), respectively. It 
further has been shown to explain a significant amount 

of variance of human neural data (Schrimpf et al., 
2018), suggesting that the CNNs learned visual 
features and representations similar to human neural 
visual representations. Here, we trained VGG16 
networks separately on face and object categorization, 
and on both tasks simultaneously (i.e., dual-task). 

Network Training and Testing 

Separate face network: To measure face identity 
recognition performance in a fully separate network, we 
trained a randomly initialized network on face identity 
recognition only. The CNN was trained on a randomly 
sampled set of 1,000 identities (500 female) from the 
VGGFace2 database (Cao, Shen, Xie, Parkhi, & 
Zisserman, 2018). For each identity, we selected 300 
images for training, and 50 images for validation. We 
used SGD with momentum (initial learning rate: 10-2) 
and reduced the learning rate twice to 10-3 and 10-4 after 
30 training epochs (i.e., full passes over the training 
set), respectively. All training parameters were selected 
in pilot experiments. The resulting classification 
accuracy on the validation set provides a performance 
measure of a network that is free to learn face-specific 
features at all stages of processing.  

Separate object network: We measured object 
recognition performance achievable by a network 
trained on object recognition only. To keep the 
performance between the face and object networks 
comparable, we trained the same architecture (i.e., a 
randomly initialized VGG16 network) on 600 randomly 
sampled categories of the ILSVRC-2012 database 
(Deng et al., 2009) and used 500 images per category 
for training and 50 for validation. All other learning 
parameters were identical to the separate face network. 
The resulting classification accuracy on the validation 
set served as a measure for unconstrained object 
categorization performance.  

Face and object decoding: To test whether the 
separate networks learned similar or distinct features, 
we decoded exemplars from an independent set of face 
identities and object categories in each network. 
Specifically, we extracted the activation in the 
penultimate layer of each network to 100 face and 
object images respectively (10 categories with 10 
exemplars each). We then trained and tested a support 
vector machine on these activation patterns using a 10-
fold cross-validation scheme.  

Dual-task networks: To test how well a network 
trained on both tasks would perform, we used a dual-
task architecture (see Fig. 1) and trained the same 
network on object categorization and face identity 
recognition simultaneously. We varied the number of 
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shared layers between the two tasks by separating the 
network after each pooling (5 total) and fully connected 
layer (2 total) in the network, resulting in seven branch 
points. Each of these seven networks was randomly 
initialized, presented with batches (64 images) of face 
and object images interleaved, and otherwise trained 
with the same images and parameters as the separate 
networks. We assessed the classification accuracy for 
each task relative to the separate networks. If the cost 
of sharing representations across tasks is sufficiently 
high, we expect the performance to significantly drop 
relative to the separate networks. Meanwhile, a drop in 
performance at an early branching point would suggest 
that processing needs to be separated early to avoid an 
impairment in performance, while a drop at a later stage 
would suggest that the network can process both tasks 
simultaneously and still achieve performance similar to 
the separate networks. 

Significance Testing: We obtained SEMs for all 
networks by bootstrapping across classes and images 
10,000 times. Significance of comparison between the 
dual-task and the separate networks was obtained by 
using direct bootstrap tests and FDR-correction. 

Results 

Face and Object CNNs Learn Distinct Features 
We were able to decode novel (i.e., untrained) object 
categories and face identities above chance (10%) from 
each network (Fig. 2). However, there was a large drop 
in decoding accuracy from the trained compared to the 
untrained stimulus type (faces versus objects). The 
features extracted from the network trained only on face 
identification were less useful to decode object 
categories (face CNN: 50% correct versus object CNN: 
88%) and vice versa for face decoding (object CNN: 
65% correct versus face CNN: 100%). These results 
suggest that the features optimized for face and object 
categorization differ from one another. 
 

 
Figure 2: Decoding accuracy of decoding (A) object 

categories and (B) face identities from the penultimate 
layer of the network trained only on face identification 
(red) or only on object categorization (orange). Error 

bars indicate SEM across classification folds. The 
dashed grey line indicates chance level (10%). 

Late-branching dual-task networks see 
modest, but significant detriment 

Both separate networks achieve high performance on 
the validation set (face network: 1000-way 
classification: Top-1 94%, Top-5 98%; object network: 
600-way classification: Top-1 57%, Top-5 81%), 
comparable to performance reported previously (Parkhi 
et al., 2015). The dual-task networks successfully learn 
to perform both tasks simultaneously (Fig. 3). While the 
performance of the dual-task networks that branched 
after the fifth pooling layer dropped significantly below 
the performance achieved by the separate networks, 
the differences were very small (object branch after pool 
5: 1.49%; fc6: 1.34%; fc7: 1.84%; face branch after pool 
5: 0.53%; fc6: 0.49%; fc7: 0.61%; all p < 10-2, bootstrap 
test, FDR-corrected). In fact, even the network that 
does not branch until the last layer performed almost as 
well as the separate networks (face branch: Top-1 
93.99% versus 94.60%; object branch: Top-1 55.37% 
versus 57.22%). At first glance, this result seems to 
suggest that shared processing does not substantially 
impair performance on face and object processing. But 
another possibility is that it is not necessary to impose 
any branching structure on the network before training, 
because the network discovers functional segregation 
itself. To address this question we are currently testing 
whether covert functional segregation is evident within 
the shared layers of the dual-task network, or whether 
in fact the two tasks are processed within largely 
overlapping units within these layers. 

 

Figure 3: Performance of the dual-task networks as 
a function of location of branching point. Grey areas 

indicate performance obtained by the separate 
networks. Error bars plot SEM, bootstrapped over 

stimuli and classes.  

Discussion 

Our study tests the hypothesis that the functional 
segregation of visual category processing evident in the 
human brain reflects an efficient strategy for the 
problem of visual recognition. First, we showed that a 
network trained only on object recognition does not 
perform well at face recognition and vice versa, 

572



indicating that the feature spaces optimized for these 
two tasks differ from each other. Ongoing analyses are 
investigating the nature of these feature spaces at each 
layer, asking how early they diverge, and characterizing 
how they differ from one another. Next, we used a 
recently introduced method to test whether 
performance on the two tasks requires some 
segregation of processing in CNNs (Kell et al., 2018). 
To our surprise, we found that the performance of the 
fully shared dual-task network performed nearly as well 
on object and face recognition as the two separate 
networks did. At first glance, this result seems to argue 
against our hypothesis because we did not have to 
impose segregation between face and object 
processing in the network to maintain performance 
comparable to the separate networks. However, it is 
possible that even though we did not impose separate 
branches for face and object processing in the shared 
network, the network “discovered” the potential 
computational advantages of functional segregation on 
its own. Ongoing analyses are testing whether the 
shared network contains “hidden specialization”, with 
separate processing of faces and objects within the 
layers. We further plan to compare the results for faces 
and objects (which are segregated in the brain) with 
findings for other pairs of tasks (e.g., cars and objects), 
for which functional specialization has not been 
observed in the human visual processing system. 
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