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Abstract
In mammals, goal-directed behaviour, relying on an inte-
grated network of fronto-striatal and fronto-parietal sys-
tems, supports the performance of flexible behavior. Here
we focus on the contribution to such flexibility of top-
down selection processes involving internal representa-
tions of percepts. We study these processes through a
computational model able to solve the Wisconsin Card
Sorting Test (WCST), an important neuropsychological
test used for measuring cognitive flexibility. The analysis
of the model behavior solving the WCST, and its errors re-
sulting from different lesions, are comparable with those
of healthy participants and patients with frontal impair-
ments performing the test. The results represent a first
validation of our hypothesis on the importance of inter-
nal representation selection for cognitive flexibility.
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Introduction
Goal-directed behaviour (GDB; Daw, Gershman, Seymour,
Dayan, and Dolan, 2011) is supported by mechanisms able to
flexibly create associations between perceptions and actions.
This function relies on an active internal exploration of the pos-
sible alternative courses of action based on task-independent
representations of the world dynamics. Here we hypothesise
that GDB supports cognitive flexibility (the ability to change
strategy depending on the external feedback; Diamond, 2013)
based on the selection of internal perceptual representations.
This selection relies on the active top-down control of percep-
tion affecting both bottom-up and top-down perceptual pro-
cesses (Findlay & Gilchrist, 2001; Vitay & Hamker, 2007).

The Wisconsin Card Sorting Test (WCST; Heaton et al.,
2000) is an important neuropsychological test used to mea-
sure cognitive flexibility. Here we propose a computational
model able to solve the WCST by pivoting on a novel mech-
anism operating a top-down selection of internal perceptual
representations. We validate the model by showing how its
behaviour, and the behaviour of some lesioned versions of
it, resemble the behaviour of healthy and pathological human
participants of the test.

Previous computational models focused on the theoreti-
cal analysis (Dehaene & Changeux, 1991), psychiatric pa-
tients (Berdia & Metz, 1998), deficit varieties (Kaplan, Şengör,

Gürvit, Genç, & Güzeliş, 2006), neuronal dynamics (Rigotti,
Ben Dayan Rubin, Wang, & Fusi, 2010), sequential learn-
ing processes (Bishara et al., 2010), and the role of a spe-
cific brain component such as basal ganglia (Caso & Cooper,
2017) in the WCST. However, none of them showed the im-
portant role that the selection of internal perceptual represen-
tations, and the effect of them on bottom-up and top-down
processes, might have for the solution of the task.

Task

In the WCST (Figure 1) the participant has to draw a card from
a deck and match it to one of four sample cards following a
visual criterion. Each card contains items with unique combi-
nations of features. These features are grouped in three cate-
gories, each involving four attributes: colour (red, green, blue,
or yellow); shape (stars, triangles, circles, or crosses); number
(one, two, three, or four elements). To solve the task, the par-
ticipant should move each deck card close to one of the target
cards by trying to match it in terms of either the colour, the
form, or the number. After each matching attempt, an external
operator gives a feedback (‘correct’ or ‘not correct’) based on
the current matching rule. The participant is not told this rule
that so should be inferred through the feedback. Critically, the
correct rule changes after a certain number of uninterrupted
correct actions (usually 10) and when this happens the partic-
ipant should infer the new rule and flexibly switch to it.

Figure 1: The Wisconsin Card Sorting Test: task setting.
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The model architecture and functions
Figure 2 shows the architecture and functions of the model.

Neuro-functional components of the model
The model is formed by components implementing functions
that resemble analogous functions of brain areas relevant for a
GDB-based interaction with the environment: (a) a visual sen-
sor that mimics the fovea/perifovea parts of the retina; (b) a
hierarchical perceptual system that processes visual informa-
tion and extracts visual features, simulating the human visual
system (Konen & Kastner, 2008); (c) a working-memory that
stores the goals linked to the possible matching rules, sup-
ported by the brain prefrontal cortex (Barraclough, Conroy, &
Lee, 2004) and frontal-striatal loops (Baldassarre et al., 2013);
(d) a motivational system, processing the external feedback,
that activates the goals within the working-memory, a function
mostly supported by brain basal ganglia and ventral systems
(Gläscher, Daw, Dayan, & O’Doherty, 2010); (e) a selector
that chooses the matching rule and hence the specific fea-
tures of the cards that the system focuses on, simulating the
contribution of basal ganglia (Redgrave, Prescott, & Gurney,
1999) and frontal-parietal cortex (Gazzaley & Nobre, 2012) to
top-down control of internal perceptual representations; (f) a
comparator that supports the visual matching (comparison of
the deck card and a target card), executed by brain frontal
and temporal-occipital cortices (Perani et al., 1999); (g) a mo-
tor component performing the movements of the visual sensor
and the displacement of the deck card close to the target card.

Computational implementation of the model
The model components are mainly implemented with neu-
ral networks. The working-memory component is formed by
recurrent units that encode the tendency to choose specific
matching rules. Each unit has a self-synapse and decays to
a baseline (0.5) with a decay rate φ. The motivational compo-
nent, that changes the working-memory values on the basis
of external feedback, is supported by a reinforcement learn-
ing algorithm (reward - expectation) with a learning rate µ.
The hierarchical perceptual system is supported by a modi-
fied version of Deep Belief Network (DBN; Hinton, Osindero,
and Teh, 2006), a bidirectional network composed by two
stacked generative Restricted Boltzmann Machines (RBM;
Hinton, 2012). The DBN is composed by a traditional RBM -
trained by the contrasting divergence algorithm - and a super-
vised RBM trained with a modified version of the contrasting
divergence algorithm where specific units of the external layer
are clumped to different attributes of the colour, shape, and
number (this learning putatively takes place before the WCST
session based on the interaction with the world). Top-down
selector is composed by (a) a softmax function (with temper-
ature τ) that operates the choice of the behavioural strategy
based on the working memory content, and (b) a disinhibi-
tion mechanism, mimicking basal ganglia, which inhibits all the
units of the last DBN layer with the exception of the one encod-
ing the desired rule. This allows the system to have an inter-
nal representation of each card (RBM) that is focused one one

specific attribute (either colour, shape, number). This process
is sequentially applied to the deck-card and each target-card
until a matching between them is found, and the deck-card
displacement is triggered. The matching (based on Euclidean
distance) is performed on the basis of the DBN reconstructed
image focused on the selected attribute.

Results and conclusion

We used five behavioural measures to score the model and
compare it with human data: (a) completed categories (CC):
this identifies the number of successfully completed cate-
gories (max six categories i.e. colour, shape, number, colour,
shape, number) and informs about the level of global perfor-
mance; (b) total errors (TE): this identifies the total incorrect
responses and is informative about the level of global deficit;
(c) perseverative errors (PE): these mark a perseverative ten-
dency to sort the cards with the same incorrect rule after a
negative feedback; (d) non–perseverative errors (NPE): these
occur in different situations and suggest an attentional fail-
ure or incorrect inferential reasoning; (e) Failure-to-Maintain
Sets (FMS) errors: these occur after five consecutive correct
matches and suggest a distraction.

We searched different parameter settings to obtain two dif-
ferent groups of models (‘conditions) exhibiting different rele-
vant behaviours: (a) healthy model (HM): this baseline model
reproduces the behaviour of normotypical WCST participants;
(b) pathological model (PM): this reproduces the behaviour of
pathological WCST participants. Moreover, we applied two
types of ‘lesions’ to the model, thus obtaining two ‘extreme
pathological’ versions of it. The first lesion (an extreme low
µ value that negatively influences the efficacy of reinforce-
ment processing) produces a highly perseverative model (PM)
with a low sensitivity to rule changes (high number of PE).
The second lesion (an extreme high values of τ, the tem-
perature of softmax, that makes the model insensitive to val-
ues differences, together with an extreme high φ, the decay
speed of recurrent units self-synapses, that causes a forget-
ting of previous chosen rule) produces a distracted model
(DM) that shows an opposite tendency with respect to the pre-
vious model, i.e. an extreme distracted and erratic behaviour
(high number of NPE and FMS errors).

Figure 3 and Figure 4 show the statistical comparisons be-
tween human data and artificial data in healthy and patholog-
ical conditions, highlighting the similarity between the model
behaviour and target empirical data. Figure 5 shows the errors
of the extreme pathological models, highlighting the effects of
specific neuro-inspired lesions.

The results validate the hypothesis, incorporated in the
neuro-inspired model, that the selection of internal perceptual
representations might represent a key mechanism supporting
goal-directed cognitive flexibility measured by the WCST. In
particular, the manipulation of the parameters of the model
regulating its selection and memory processes, mimicking dif-
ferent possible lesions, reproduce the tendency of human pa-
tients to exhibit perseverative or distracted WCST errors.
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Figure 2: Schema that integrates biological, functional and computational information about constituting components. The
brain figure into upper-right corner exemplifies brain systems simulated in our model, supporting the top-down manipulation of
perception .

Figure 3: Statistical comparison of the errors of healthy human
participants and the healthy model.

Figure 4: Statistical comparison of the errors of the human
pathological participants and the pathological model.
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Figure 5: Statistical comparison of the errors of the healthy,
pathological, extreme perseverative, and extreme distracted
pathological model.

Acknowledgments
This research has received funding from the European Unions
Horizon 2020 Research and Innovation Programme, under
the project ‘GOAL-Robots – Goal-based Open-ended Au-
tonomous Learning Robots, Grant Agreement No 713010.

References
Baldassarre, G., Mannella, F., Fiore, V. G., Redgrave, P., Gur-

ney, K., & Mirolli, M. (2013). Intrinsically motivated action-
outcome learning and goal-based action recall: A system-
level bio-constrained computational model. Neural Net-
works, 41, 168-187. doi: 10.1016/j.neunet.2012.09.015

Barraclough, D. J., Conroy, M. L., & Lee, D. (2004). Prefrontal
cortex and decision making in a mixed-strategy game. Na-
ture neuroscience, 7 (4), 404.

Berdia, S., & Metz, J. (1998). An artificial neural network stim-
ulating performance of normal subjects and schizophrenics
on the wisconsin card sorting test. Artificial intelligence in
medicine, 13(1-2), 123–138.

Bishara, A. J., Kruschke, J. K., Stout, J. C., Bechara, A.,
McCabe, D. P., & Busemeyer, J. R. (2010). Sequential
learning models for the wisconsin card sort task: Assessing
processes in substance dependent individuals. Journal of
mathematical psychology , 54(1), 5–13.

Caso, A., & Cooper, R. P. (2017). A model of cognitive con-
trol in the wisconsin card sorting test: Integrating schema
theory and basal ganglia function. In Proceedings of the
39th annual meeting of the cognitive science society, cogsci
2017, london, uk, 16-29 july 2017 (pp. 210–215).

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan,
R. J. (2011). Model-based influences on humans’ choices
and striatal prediction errors. Neuron, 69(6), 1204–1215.
doi: 10.1016/j.neuron.2011.02.027

Dehaene, S., & Changeux, J.-P. (1991). The wisconsin card
sorting test: Theoretical analysis and modeling in a neu-
ronal network. Cerebral cortex , 1(1), 62–79.

Diamond, A. (2013). Executive functions. Annu Rev Psy-
chol , 64, 135–168. doi: 10.1146/annurev-psych-113011-
143750

Findlay, J. M., & Gilchrist, I. D. (2001). Visual attention: The
active vision perspective. In Vision and attention (pp. 83–
103). Springer.

Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation:
bridging selective attention and working memory. Trends in
cognitive sciences, 16(2), 129–135.
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