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Abstract: 

Cooperation and competition are fundamental modes of 
social interaction. It is imperative that we study such 
behavior to unravel the staggering complexities of the 
human brain. We aim to develop a modelling framework 
to disentangle the neural underpinnings of such 
behavior with a sophisticated design of the iconic tiger 
task. The task revolves around the nuances of human 
decision making where the participant is choosing 
between two doors hiding a tiger or a gold pot and an 
option of taking a hint. The task becomes more 
demanding in the multiplayer setting where one needs to 
either synchronize actions with the other participant 
(cooperation) or outsmart the other participant 
(competition) in order to earn maximum reward. We 
estimate logistic discrete choice models with Bayesian 
Hierarchical modeling to model the participants’ choices 
in the single and multiplayer versions of the task. The 
inclusion of the social information in the model for the 
multiplayer version significantly improves the model fit. 
As an extension to this descriptive model, we will use I-
POMDP that explicitly models the other participant as an 
intentional agent to investigate the theory of mind of 
cooperation and competition further. 
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Introduction 

Social interactions have been the building block of 
society. Cooperation and competition are two 
fundamental modes of interactions between individuals. 
Both require social reasoning about the mental states 
of others and to recognize that their beliefs and goals 

may be different from one’s own (Theory of Mind). This 
mentalizing often takes the form of a mental model of 
the other person that can be queried for estimating the 
beliefs and ensuing actions of others. These models 
may or may not include a model that the other person 
builds of ones’ own beliefs and actions (recursivity of 
social reasoning). It remains an open question, whether 
cooperation and competition place the same or 
disproportionate demands on mentalizing capabilities. 
Traditionally, competition is thought to require more 
elaborate and recursive reasoning about the other 
players’ strategy: one needs a good estimate of the 
other person’s beliefs and action to be able to exploit 
them. Nevertheless, cooperation may or may not 
require the same level or reasoning: a similarly precise 
estimate of the other person’s beliefs and actions is 
necessary for successful coordination and cooperation. 
In this study we aim to characterize the social reasoning 
processes in the context of cooperation and competitive 
decision-making. 

To unravel the cognitive and neural underpinnings of 
these modes of social interaction we use the iconic 
Tiger Task. It played a crucial role in developing the 
partially observable Markov decision processes 
(POMDPs) computational framework by providing a test 
bed for simulating decision-making of a single agent in 
an uncertain world. The task mimics the setting of a 
game show in which the agent is presented with two 
doors, one of which hides a tiger (incurring a large loss)  
and  the  other  one  hides  a  pot  of  gold (incurring 
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small win). The uncertainty lies in the location of the 
tiger. POMDPs are an improvement on the traditional 
MDP’s for situations where the present state is 
uncertain and can be estimated with Bayesian updating 
over a belief distribution of the states (Kaelbling, 
Littman, & Cassandra, 1998).  

The POMDP framework has been subsequently 
extended for multi-agent settings resulting in interactive 
partially observable Markov decision process (I-
POMDP) (Gmytrasiewicz & Doshi, 2005),  in  which  two  
or  more  agent  interact  in an uncertain world. 
Following Doshi (Doshi, 2005), we modified the Tiger 
task into cooperative and competitive environments 
where two human participants either cooperate or 
compete to maximize their goals. In this extension we 
demonstrate that the social factor is crucial for making 
informed decisions that maximize reward. In addition, 
we also highlight the basic differences in cooperation 
and competition and model them using the Bayesian 
Hierarchical modeling. 

Task and Hypothesis 

The goal of the Tiger Task is to maximize the reward by 
opening the door hiding the gold (+10 point) and to 
avoid opening the door with the tiger (-100 points). In 
each step there are 3 actions available to the 
participant: open left door (OL), open right door (OR), 
or listen (L), which results in a probabilistic hint about 
the location of the tiger (growl left (GL), or growl right 
(GR)), but also costs 1 point. Thus, participant can 
accumulate evidence about the tiger location through 
repeated L actions. After each open action the position 
of the tiger is reset randomly to one of the two doors 
(tiger left (TL) or tiger right (TR)).  

In the multi-player version, the participants receive an 
additional probabilistic hint about the actions of the 
other player: creak left, or creak right (indicating that the 
other player might have opened one of the doors), or 
silence (S) indicating that the other player probably 
listened. Creaks suggest that the location of the tiger 
might have reset and that currently accumulated beliefs 
about the tiger location are void. Opening the door 
reveals the correct location of the tiger and the 
participant receives the associated reward with 
additional knowledge of the tiger reset. In our 
implementation of the Tiger Task participant were also 
asked to predict the other player’s actions at each step 
before choosing their own action (see Figure 1A for task 
sequence). 

The competitive and cooperative versions differ in the 
structure of the payoff matrix: while the cooperative 
version incentivizes concurrent open actions by both 
players (see Figure 1B bold marking), the competitive 
version provides the maximum reward, if the correct 

door hiding the gold is opened, while the other player 
opens the wrong door hiding the tiger (see Figure 1C 
bold marking). Comparing the two versions, we 
expected that participants will take more hints to come 
to reach a consensus in cooperative context to avoid 
confusing the other player and generate a more 
predictable behavior. We also expected more identical 
actions and more accurate predictions of the other 
player’s actions during cooperation.  

 

 

 

 

Figure 1: (A) An   example   of sequence for the multi-player version   
of   the   task. The   player predicts the action of the other player 
(indicated  by  the  blue  fixation  dot) followed  by  the  players  own  
action choice(indicted    by    the    yellow fixation dot). This is followed 
by the probabilistic    evidence    about    the other player's action 
(CL/CR).  The next screen is either the probabilistic hint about the 
tiger location (GL/GR if L   was   chosen)   or   the   door   is opened 
(for OL or actions) revealing the tiger location. (B) The joint payout 
matrix in the cooperative context is shown when the tiger is on the left 
side. The  bold  numbers  showing  the  best  choice indicating  that  
the  maximum  payoff  is  achieved, when both players open the 
correct door at the same time. (C) The joint payout matrix in the 
competitive context is shown for the tiger being on the left side. The 
bold numbers  show  the  best  and  worst choice indicating  that  the  
best  own outcome  is  achieved  if  the  correct door (with the gold) is 
opened, while the   other   player   open   the   wrong door  (with  the  
tiger). 
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Results 

We invited 58 participants (30 cooperate, 28 compete) 
to play the multi-player version of the game. In the 
model-free analysis we observed that the participants in 
the cooperative context took more hints than in the 
competitive context. In addition, prediction accuracy 
was higher during cooperation. These outcomes were 
both in line with our expectations. Participants in the 
competitive version exhibited fewer identical actions 
when compared to cooperation (Figure 2A-C).  

Participants in the Tiger Task form beliefs about the 
states of the game (TL or TR) based on the probabilistic 
hints (GL or GR) and – in the multi-agent Tiger Task – 
the information from the other player (CR or CL). 
Because there are 3 distinct actions (OL, OR, L) 
available, we decided to model the action a(t) at each 
step t as an ordered logistic regression model: a(t) = ß0 
+ ß1 * b(t), where b(t) is the belief about the location of 
the tiger.  

The Tiger Task has only 2 states (TL and TR), which 
implies a unidimensional belief distribution with both 
states at the end of the range of possible beliefs. This 
belief distribution is updated on every step with the 
observations following the current action. We compared 
two version of belief updating: a simple “beta-belief” 
model, which uses the mode of a beta distribution as 
the point estimate of the belief and is updated by 
adjusting the parameters of the beta distribution with the 
observations (the probabilistic hints following L actions). 
The second model is a Bayesian belief updating model 
with take the previous belief as the prior and calculates 
the likelihood based on the observation and transition 
function. We also tested two versions of the Bayesian 
updating model without (Eq 1) and with the inclusion of 
the social information (Eq 2, also see Figure 3A-B as an 
example): 

 

b(t) =
𝑝(𝑔𝑐)∗𝑏(𝑡−1)

𝑝(𝑔𝑐)∗𝑏(𝑡−1)+(1−𝑝(𝑔𝑐))∗(1−𝑏(𝑡−1)))
    

(1) 

Where, p(gc) is the probability of the hint being correct 
and b(t-1) is the previous belief about the tiger location. 

b(t)=
𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)+(1−𝑝(𝑐𝑐))∗(1−𝑝(𝑜𝑜))
∗ 𝑝(𝑟𝑒𝑠𝑒𝑡)  +

            1 −  
𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)+(1−𝑝(𝑐𝑐))∗(1−𝑝(𝑜𝑜))
∗ 𝑏(𝑡 − 1) 

 
 
(2) 

Where, p(cc) is the probability of the hint about the 
partners' action being correct and p(oo) is the 
probability of the partner opening the door, while 
p(reset) is the probability of the tiger being placed after 
a door is opened (0.5 for a random placement). 

Models were estimated using the Stan software 
package that implements a hierarchical Bayesian 
workflow. Formal model comparison using LOOIC 
(Leave-one-out information criterion) revealed that the 
Bayesian belief update model resulted in a better fit 
than the beta-belief model (LOOIC (Bayesian belief) = 
5107.75, LOOIC (Beta belief) = 8530.70). In control 
analysis, we expanded the set of predictors in the 
ordered-logistic model with additional task variables like 
the number of hints taken, previous outcome and an 
interaction between them (Model 2-5), but found the 
simpler model with just the belief as a predictor (Model 
1) outperforms these more comprehensive predictor 
sets (Figure 4A-B). Furthermore, we compared the 
Bayesian belief update without the social information 
(Eq 1) to the update with the social information added 
(Eq 2) and concluded that the social information adds a 

Figure 2: (A) In the multi-player version of the task the participants 
significantly took more hints in the cooperative context when 
compared to the competitive context. Participants also had 
significantly higher prediction accuracy and identical actions (showing 
coordination) in the cooperative context compared to the competitive 
one in (B) and (C) respectively. Figure 3: (A) An example model behavior of the multi-player version 

of the tiger task without the social information (see Eq 1) is shown 
here. The bold red line is the model prediction, while the blue triangles 
are the actual participant action choices given their computed beliefs. 
Green dots, which always lie on the red model curve show the model 
predictions of the data (blue triangles). The light-blue area shows the 
belief region where the ordered logistic model predicts the listen 
action. In the red and green areas the ordered logistic model predicts 
Open Left and Open Right action respectively. The absence of these 
areas in this model suggests that the model without the social 
information fails to predict the observed open left/right actions. (B) 
This model behavior shows the prediction made with the social 
information (Eq 2). This model predicts most of the OL actions (red 
area) and OR actions (green area) correctly demonstrating the 
importance of the social information (CR/CL) for correctly predicting 
the observed data. 
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significant improvement in the model prediction (see the 
scales of LOOIC values in Figure 4A and 4B). 

Finally, in the Bayesian updating model with the social 
information we observed that the decision thresholds of 

the ordered logistic regression in the competitive 
version were narrower than in the cooperative version 
(p<0.045) indicating the participants in the latter version 
compensated for the uncertainty of other player’s 
beliefs about the tiger location before opening the door. 
In contrast, in the competitive version they were willing 
to take more risks in order to make to a decision faster 
than their opponent. 

 

Outlook 

We used an ordered logistic discrete choice model with 
Bayesian belief updating for modeling the behavioral 
data in the multi-agent Tiger Task and demonstrated 
that including the social information is providing a much 
better model fit to the data. This suggests that 
participants in the multi-agent Tiger Task do incorporate 
the information from the other player into their valuation 
process. However, our Bayesian belief model falls short 
of an important feature that is likely shaping strategic 
social decisions: it treats the information from the other 
players as just another piece of information from the 
environment and not as an intentional agent that 
processes the information in a similar way.  

I-POMDPs are a computational framework that 
explicitly computes the beliefs of the other player as an 
intentional agent as part of the model of the first player. 
Thus, it is an ideal framework for modeling Theory of 
Mind of another player in a quantitative way (his goals, 
intentions, and beliefs). Following our Bayesian belief 
model, we will also model the Tiger Task within the I-

POMDP framework and compare belief computations 
of the other player in the competitive and cooperative 
version of the task. 
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Figure 4: (A) Different models compared of the multi-player version 
of the task. All the models in (B) without the social information perform 
worse compared with the LOOIC values of the models with the social 
information added in (C) (see different scales in (B) and (C)). The 
simplest model with just the belief update (model number 1) in (C) 
performed better when compared to extensions of number of hints 
taken, previous outcome and an interaction of them. 
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