
The Notorious Difficulty of Comparing Human and Machine Perception

Judy Borowski*1, Christina M. Funke*1, Karolina Stosio1, 3,
Wieland Brendel† 1-3, Thomas S. A. Wallis† ‡ 1, Matthias Bethge† 1-3

* joint first authors, † joint senior authors, firstname.lastname@bethgelab.org
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Abstract
With the rise of machines to human-level performance
in complex recognition tasks, a growing amount of work
is directed towards comparing information processing in
humans and machines. These works have the potential
to deepen our understanding of the inner mechanisms
of human perception and to improve machine learning.
Drawing robust conclusions from comparison studies,
however, turns out to be difficult. Here, we present
three case studies to highlight common shortcomings
that can easily lead to fragile conclusions. These pitfalls
include sub-optimal training procedures or architectures
that lead to premature claims regarding gaps between hu-
man and machine performance, unequal testing proce-
dures that lead to different decision behaviours, and fi-
nally human-centred interpretation of results.

Addressing these shortcomings alters the conclusions
of previous studies. We show that neural networks can, in
fact, solve same-different tasks, that they do experience
a “recognition gap” on minimally recognisable to max-
imally unrecognisable images, and finally, that despite
their ability to solve closed-contour tasks, neural net-
works use different strategies than humans. To counter
these three pitfalls, we provide guidelines on how to com-
pare humans and machines in visual inference tasks.
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Introduction
How do biological brains infer environmental states from sen-
sory data? This has been a central question in neuroscience
and psychology for over 100 years. In vision, early theorists
(Alhazen, 1083; Helmholtz, 1925; Howard, 1996) proposed
that perception was a process of unconscious inference: given
ambiguous sensory data, we usually perceive a stable and
coherent world. While these models have had some notable
successes in explaining aspects of visual perception, until re-
cently they were unable to perform most of the natural tasks
we effortlessly perform daily.

Advances in computer vision, particularly with respect to
convolutional neural networks, have created systems that can
now perform these tasks at human levels. For example, deep
neural networks can perform complex tasks such as object
recognition (Krizhevsky, Sutskever, & Hinton, 2012), saliency
prediction (Kümmerer, Theis, & Bethge, 2014), depth esti-
mation (Eigen & Fergus, 2015) and semantic segmentation
(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2017). These

successes invite the enticing possibility that we may learn
from one system by studying the other (Hassabis, Kumaran,
Summerfield, & Botvinick, 2017; Jozwik, Kriegeskorte, Cichy,
& Mur, 2019; Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019;
Kriegeskorte & Douglas, 2018; Lake, Ullman, Tenenbaum, &
Gershman, 2017).

We show in this paper that such comparisons can be
fraught with difficulties. We present three case studies that
demonstrate different pitfalls in comparing human and ma-
chine performance.

Synthetic Visual Reasoning Test —
Sub-optimal Architectures Can Lead to Fragile

Conclusions
In order to compare human and machine performance in
learning relationships between visual shapes, Fleuret et al.
(2011) created the Synthetic Visual Reasoning Test (SVRT)
consisting of 23 problems (Fig. 1A). They showed that hu-
mans need only few examples to understand the underlying
concepts. Stabinger, Rodrı́guez-Sánchez, and Piater (2016)
as well as Kim et al. (2018) assessed the performance of deep
convolutional architectures on these problems. They found
that some visual reasoning tasks were more difficult than oth-
ers. Specifically, their models performed well on tasks that
concern the spatial arrangement of objects — so-called spa-
tial tasks — however, they struggled to learn tasks that involve
the comparison of shapes — so-called same-different tasks
(Fig. 1B). Based on these findings, Kim et al. (2018) claimed
that same-different relationships would be difficult to learn in
feed-forward convolutional architectures. They suggested that
such comparisons might require feedback as found in recur-
rent systems.

In our experiment, we trained a feed-forward neural net-
work based on the ResNet50-architecture (He, Zhang, Ren,
& Sun, 2016) on the SVRT problems and show that our mod-
els could indeed perform well on both types of tasks (Fig. 1B).
Specifically, our models were able to reach accuracies above
90% for all tasks. Thus, while other network architectures
may be more efficient at learning same-different tasks than
feed-forward networks (Kim et al., 2018), our results show that
these tasks are not an inherent limitation of the network archi-
tecture per se. These findings highlight that when comparing
which tasks are easy or difficult for humans or machines, it is
important to keep in mind that a low performance of the ma-
chine model might arise from sub-optimal model parameters
or training procedures. Hence, inferring general statements
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Figure 1: A: For three of the 23 SVRT problems, two example images representing the two opposing classes are shown. For
each of the problems, the task is to find the rule that separates the images and to sort them accordingly. B: Kim et al. (2018)
trained a DNN on each of the problems. They found that same-different tasks (red bars) are harder than spatial tasks (blue bars).
Bars are re-plotted from Kim et al. (2018). Our ResNet50-based models (grey bars) reached high accuracies for all problems.

about failures of certain architectures necessitates a very thor-
ough optimisation of all relevant parameters.

Recognition Gap — Humans and Machines
Should Be Exposed to Equivalent Settings

Ullman et al. (2016) claimed the “human visual system uses
features and processes that are not used by current models
and that are critical for recognition.” This statement was based
on experiments showing that humans’ ability to recognise im-
age crops dropped sharply when the patch became too small
or the resolution too low (Fig. 2 A, left column and Fig. 2
B, horizontal bar). In contrast, their machine algorithms did
not show this ’recognition gap’ when tested on these human-
selected stimuli (Fig. 2 B, right column).

Here, we investigated the same phenomenon in a very sim-
ilar experimental design but with one crucial difference: in-
stead of testing machines on human-selected patches, we
tested them on machine-selected patches. In this way, we en-
sured that machines were tested in exactly the same way that
humans were tested, i.e. humans and machines were each
tested on patches they selected. We found that our VGG-
based model (Simonyan & Zisserman, 2014) did experience
a similarly strong recognition gap between minimally recog-
nisable and maximally unrecognisable stimuli (Fig. 2B) - just
like found for humans by Ullman et al. (2016).

We hereby illustrated that appropriately aligned testing con-
ditions for both humans and machines are inevitable to com-
pare perceptual phenomena between the two systems.

In the next section, we present another visual task that
our deep convolutional neural network is able to successfully

learn. However, we illustrate the pitfalls arising from interpret-
ing the decision strategies of a machine from a human-centred
perspective and ways to overcome this bias.

Closed Contour Detection — Models Do Not
Necessarily Learn Human-like Concepts

Closed contours are thought to be prioritised by the human
perceptual system and to be important in perceptual organi-
sation (Elder & Zucker, 1993; Koffka, 2013; Kovacs & Julesz,
1993; Tversky, Geisler, & Perry, 2004). Here, we tested how
well humans and a neural network could separate closed from
open contours. To this end, we developed our own data set
of images consisting of a main open or closed contour and
additional task-irrelevant flankers.

We found that both humans and our ResNet50-based
model could reliably tell apart images containing a closed con-
tour from images containing an open contour (Fig. 3A, first
column). In addition, our model also performed well on many
variations of the contour task without further fine-tuning, in-
cluding on dashed or asymmetric flankers or curvy instead of
straight lines (Fig. 3A). These results suggest that our model
did, in fact, learn the concept of open and closed contours
and that it performs a similar contour integration-like process
as humans.

However, our model did not learn this concept. For one, our
model did not generalise to other variations such as different
line colours or thicknesses (Fig. 3B). Second, very small and
almost imperceivable changes in the brightness values of the
image changed the decision of the model (Fig. 3C).

Instead of contour integration, our model might rely on
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Figure 2: A: Minimal recognisable (upper row) and maximal unrecognisable (lower row) images to humans (tested by and
reproduced from Ullman et al. (2016), left column) as well as to our DNN (right column). Titles of patches indicate recognition
probabilities p. B: Recognition gaps for machine algorithms (blue) and humans (red).

much simpler features that are easily overlooked by humans.
To analyse this, we made use of a recently introduced inter-
pretable model, BagNet-33 (Brendel & Bethge, 2019), that
sums up evidence from local patches of size 33 x 33 pixels
to reach an image-level decision and is unable to perform any
kind of non-linear integration on larger length scales (such as
those needed for contour integration). This architecture let us
trace exactly if the task could be solved with local features
and which patches were most informative. Indeed, BagNet-33
reached close to 90% classification accuracy and used dis-
tinct local statistics, in particular multiple edges close to the
endpoints of an open contour, to solve the task without any
kind of contour integration as believed to be adopted by the
human visual system (Fig. 3D).

The three techniques employed here (testing generalisa-
tion, adversarial perturbations and BagNets) provide comple-
mentary ways to investigate the strategies learned by the ma-
chine learning model in order to better understand differences
in inferential processes compared to humans. To avoid pre-
mature conclusions about what models did and did not learn,
we advocate for the routine use of various analytic techniques.

Conclusions
In this paper, we described notorious difficulties that arise
when comparing humans and machines. First, negative re-
sults are not sufficient to conclude that particular network ar-
chitectures cannot perform well at a task in principle. Second,
when comparing humans and machines, equivalent experi-
mental settings are crucial in order to make claims regarding
the existence of phenomena in either system. Finally, even if
a model does achieve high performance on a task, this does
not mean its decision-making process is human-like. Different
analysis tools such as generalisation tests, adversarial exam-
ples and tests with constrained networks can reveal insights
into the models’ inner workings.
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