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Abstract

When two targets (T1 and T2) are presented in a rapidly 
sequentially-presented stream of distractors, subjects often 
show a clear deficiency to report T2 when presented 200-500 ms 
after T1. This effect is known as the Attentional Blink (AB). 
Using the AB as a method to quantify the probability of 
conscious access, we investigate why some images seem to rise 
to consciousness more readily. By defining the representational 
relationships between images using fMRI and CNNs, we show 
that images that are distinct in high-level representations are 
more resilient to the AB effect, while low-level similarity to 
other images increase the probability of conscious access. These 
results were replicated using representational geometries 
derived from both functional Magnetic Resonance Imaging 
(fMRI) and Convolutional Neural Network (CNN). This 
provides additional parallels between the hierarchical 
complexity of CNNs trained on object classification and the 
human visual ventral stream, with CNN and brain 
representations predicting behaviour in a similar way. 
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Introduction 

The attentional blink (AB) (Raymond, Shapiro, & Arnell, 1992) is 
one of the most studied phenomena in the attention literature. In the 
AB, two targets (T1 and T2) are embedded in a rapidly sequentially-
presented stream of distractors. When T2 is positioned 200-500 ms 
after T1, subjects often show an impaired ability to report T2 relative 
to when it is presented with a longer interval. Many of the prominent 
theoretical frameworks assume a late bottleneck (Dux & Marois, 
2009), leaving most of the perceptual processing of T2 intact 
without conscious access. This makes the AB a paragon task to 
investigate the events leading up to conscious processing. In a 
previous study, we showed that there are substantial variability in 
the degree to which different stimulus categories are affected by AB 
(Lindh, Sligte, Assecondi, Shapiro, & Charest, 2019). However, 
more work is needed to understand why certain objects are more 
affected by the attentional blink window.  

One often ignored aspect of AB is the relationship between the 
targets. For example, how does the particular feature processing of 
T1 affect the processing of T2? One inherent problem is how you 
define similarity between two images in a neurally relevant way. 
Studies on repetition blindness have used the same item but from a 
different angle (Buffat, Plantier, Roumes, & Lorenceau, 2013) or 
category (Sy & Giesbrecht, 2009) as a proxy for similarity. Here, we 
turn to computational models and brain activity patterns using 

representational similarity analyses to estimate model and brain 
representational geometries (Kriegeskorte, 2009; Kriegeskorte & 
Kievit, 8/2013),  and extract continuous metrics of similarity 
between targets at different levels of information processing. 

Lindh et al. (2019) computed target-target similarity based on 
different layers of a deep convolutional neural network (DCNN), 
and showed facilitation effects. When the two targets were similar 
in their mid-level visual feature activations, T1 facilitated 
processing of T2. This is in contrast to earlier studies of repetition 
blindness (Buffat et al., 2013; Kanwisher, 1987), where task-
relevant similarity leads to interference. This suggests that 
representational geometries at the level of the brain might influence 
conscious access in object recognition, depending on context or 
task-relevance. Furthermore, this suggests that an item’s 
representational signature influences it’s propensity to be 
consciously reported. Items that have neurally distinct 
representations in task-relevant areas of the brain should be better 
processed than items with overlapping neural representations. 
Alternatively, one could imagine that items that share low-level 
physical properties could benefit from similar representations in 
early visual areas of the brain. In this study, we ask if 
representational geometry metrics can explain why some objects are 
more often consciously perceived. We ask two specific related  
questions: 1) how does target-target similarity in the brain affect 
conscious access and 2) how does object representations 
idiosyncrasies predict trial-by-trial and inter-individual variability 
in conscious access. 

Methods 

20 participants (mean age = 23, 13 females) participated in the 
study. Participants completed 4 sessions of the attentional blink task 
and two sessions of functional magnetic resonance imaging (fMRI).  
Three participants did not complete all conditions and thus were thus 
excluded from further data analyses. All participants provided  
informed consent, and were compensated for their time (at the rate 
of 10 euros an hour for behavioural and 20 euros an hour for 
fMRI).The experiment was approved by the ethics committee at the 
University of Amsterdam. 

Stimuli 
The visual objects presented in both tasks consisted of forty non-
isolated natural scene images (twenty animals, twenty non-animals), 
with central objects depicting bodies, faces, food, objects and 
places. All experiments were programmed using Psychtoolbox 
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Version 3 in MATLAB (The MathWorks, Inc, Natick, 
Massachusetts, United States). 

 

Figure 1: A) Pictorial representation of the Attentional Blink task. B) Working memory task in the scanner. C) Analysis steps. 

Attentional Blink task 
Participants were comfortably sat in front of a  19” monitor 
positioned at a distance of 60 cm. Targets and distractors were 
displayed in the centre of the screen subtending 5 degrees of visual 
angle on a constant grey background. At the beginning of a trial, 
participants attended to a white fixation cross for 1.25s.  This was 
followed by a stream of 19 images (17 distractors and 2 targets). 
Images were shown for 16.7 ms with a stimulus onset asynchrony 
(SOA) of 100 ms. The first target (T1) was randomly presented at 
position 4, 5 or 6 in the stream and the second target (T2) was 
presented either two (lag 2) or seven (lag 7) items further away. The 
distractors were scrambled image composites randomly created 
from the stimulus set (similar to (Marois, Yi, & Chun, 2004). After 
each trial, participants were prompted with a response menu for T1, 
and asked to choose which of the four possible words corresponded 
to the first target. Following this, a similar menu was displayed for 
T2. Attentional Blink Magnitudes were computed as the difference 
between T2 performances in the lag 2 and lag 7 conditions. 

Working memory task 
The same natural visual objects were used in the working memory 
task completed during fMRI scanning. Images were shown with a 5 
degree visual angle through a back projected screen visible via a 
head mounted mirror. Participants were presented with an image for 
500 ms, followed by 4000 ms of retention period. Participants were 
then prompted with a word and asked to respond yes or no, using 
the corresponding button under left or right index finger if the word 
matched the semantic content of the image.  

fMRI preprocessing 
fMRI data was converted to BIDS (Gorgolewski et al., 2016), before 
being pre-processed using fMRIPrep (Esteban et al., 2019). EPI 
images were corrected for spatial alignment, and normalised to the 

Montreal Neurological Institute ICBM template space (Mazziotta et 
al., 2001). Beta weights for each stimulus condition were obtained 
using GLMdenoise (Kay, Rokem, Winawer, Dougherty, & 
Wandell, 2013; Charest, Kriegeskorte, & Kay, 2018) and converted 
into t-patterns for pattern similarity analyses. Regions of interest 
(ROI) were defined using the Glasser atlas parcellations (Glasser et 
al., 2016). Pattern similarity was measured using Pearson’s 
correlation across all pairs of condition t-patterns within each ROI.  

Results 

The purpose of our experiment was to account for why some objects 
are more frequently reported correctly in the attentional blink. We 
did so by calculating each image’s similarity to all other images, and 
correlated that with the attentional blink magnitude (ABM) for each 
image (see methods). The ABM was calculated by subtracting each 
image’s T2 lag 7 performance from the lag 2 performance. 

Behaviour 
Subjects showed a higher T2 performance at lag 7 (M = 0.93, SD = 
0.068) in comparison to lag 2 (M = 0.823, SD = 0.05, t(15) = -7.79, 
p < 0.001), indicating the commonly found attentional blink effect.   

Similarity and T2 performance 
For each trial we calculated the representational pattern similarity 
between T1 and T2. We then correlated this with T2 performance at 
lag 2 using Spearman's correlation coefficient (Figure 2). We 
observed a positive correlation between T2 performance and T1-T2 
similarity in V1 (M = 0.04, SD = 0.04, t(15) = 3.9,  p = 0.01), 
indicating that when T2 share low-level representational patterns 
with T1, the processing of T2 is facilitated. Conversely, we observed 
a negative correlation between T2 performance and T1-T2 similarity  
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Figure 3: A) fMRI results. ROIs are ordered to approximate low- to high-level processing. Images that are generally more 
similar to other images in V1 show a lower attentional blink magnitude (ABM). In contrast, images that share representational 
patterns with other images in late visual and semantic processing areas are more likely to be blinked.  B) DCNN results. 
Repeating the analysis using DCNN features from different layers, we see the same pattern with negative correlations using 
low-level visual features and positive correlations using high-level visual features.  * = p < 0.05, ** = p < 0.01, *** = p < 
0.001. 
 
in ventral stream (M = -0.08, SD = 0.06, t(15) = -5.19,  p = 0.001), 
IPS (M = -0.08, SD = 0.07, t(15) = -4.76,  p = 0.002), TPJ (M = -
0.05, SD = 0.05, t(15) = -3.76,  p = 0.02),  dorsal stream (M = -0.05, 
SD = 0.05, t(15) = -3.66,  p = 0.02), LOC (M = -0.08, SD = 0.06, 
t(15) = -4.93,  p = 0.001) and LTC (M = -0.04, SD = 0.04, t(15) = -
3.57,  p = 0.03; all p-values are FDR corrected for multiple 
comparisons). This suggests that high-level representational overlap 
interferes with processing of T2. Altogether, these findings indicate 
that T2 processing is affected differently depending on where in the 
brain it interacts with the processing of T1. 

fMRI similarity and ABM 

Building on the finding that target-target similarity affects T2 
processing, we set out to investigate if the representational 
distinctiveness of an image can explain why some images are less 
likely to be blinked. Based on pattern representations for each ROI, 
we calculated the average similarity (AS) of one image in respect to 
all other images. This yielded one value per image, indicating how 
similar this image is overall to the rest of the image set. Using a 
searchlight procedure, we correlated each image’s AS with that 
image’s ABM. We show a large cluster of positive correlations 
extending from posterior high-level visual areas to left inferior 
frontal cortex (Fig 3A). Our a priori defined region of interest (ROI) 
confirmed this finding, showing robust high correlations in ventral 
stream (M = 0.11, SD = 0.17, t(1615 = 2.54, p = 0.029), inferior 
parietal cortex (M = 0.17, SD = 0.08, t(15) = 8.42, p < 0.001),  dorsal 
visual stream (M = 0.11, SD = 0.12, t(15) = 3.55, p = 0.005), LOC 
(M = 0.13, SD = 0.12, t(15) = 4.57, p = 0.0015), lateral temporal 
cortex (M = 0.12, SD = 0.13, t(15) = 3.8, p = 0.004) and inferior 
frontal cortex (M = 0.17, SD = 0.15, t(15) = 4.4, p = 0.001). This 
positive correlation indicates that images that are less distinct in 
high-level processing areas also are more likely to be blinked.  In 
addition, we also find a negative correlation between overall 
similarity and ABM in V1 (M = -0.05, SD = 0.08, t(15) = -2.66, p = 
0.02; all p-values are corrected for multiple comparisons using 
FDR). This is in agreement with our earlier finding that low-level, 
task-irrelevant, similarity facilitates T2 performance.  
 

 
Figure 2: Correlation between T1-T2 similarity and T2 performance 
per subject for each ROI. Individual dots indicate subjects. * = p < 
0.05, ** = p < 0.01, *** = p < 0.001 

DCNN similarity and ABM 

Using the layers of the DCNN to approximate a progression of 
complexity (Güçlü & van Gerven, 2014), we corroborated the 
results from the fMRI ROIs. We observed a negative correlation 
between image overall similarity and ABM in layer conv1 (M = -
0.1, SD = 0.13, t(16) = -2.95, p = 0.025), conv2 (M = -0.14, SD = 
0.15, t(16) = -3.31, p = 0.022), and conv3 (M = 0.11, SD = 0.13, 
t(16) = -0.327, p = 0.022). In higher layers of the DCNN, overall 
similarity correlated positively with ABM, as observed in fc7 (M = 
0.13, SD = 0.17, t(16) = 2.86, p = 0.025) and fc8 (M = 0.09, SD = 
0.14, t(16) = 2.43, p = 0.046; Fig 2B). 
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Individual differences 

We further developed the idea of representational similarity between 
objects. In a searchlight procedure, we averaged the similarity of all 
pairwise comparisons within a subject and correlated that with the 
subjects’ overall attentional blink magnitude. We found that 
subjects with more similar object representations in right temporo-
parietal junction and inferior frontal gyrus are also more vulnerable 
to the attentional blink (Fig4).   

 
Figure 4: Individual differences. A) A searchlight procedure 
revealed that subjects with more similar representations in TPJ and 
IFG are more affected by the AB. B) Example subjects depicting a 
“blinker” and a “non-blinker”. Applying multi-dimensional scaling 
to the TPJ RDMs, we see a clear modulation of representational 
richness related to task performance. 

Conclusions 

In the current study, we measured representational 
geometries from both fMRI and a DCNN to explain why 
some objects are more likely to be blinked than others. We 
show that representational overlap in task-relevant areas 
(images sharing task-relevant features with other targets) 
explain substantial trial-by-trial variability in the attentional 
blink. Moreover, we provide a novel explanation for the 
variability in conscious processing between different visual 
objects. Finally, our results suggest that object separation, or 
representational richness, in the right ventral attentional 
network (Corbetta, Patel, & Shulman, 2008), is a good 
predictor of individual differences in the attentional blink.  

Altogether our results provide a mechanistic explanation of 
conscious access in object recognition between trials, images 
and people. 
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